1. LangChain 概述
1.1 定义与背景
LangChain 是一个开源框架,于 2022 年 10 月由 Harrison Chase 推出,旨在助力开发者高效构建基于大语言模型(LLM)的应用程序。在大语言模型飞速发展的当下,虽然模型本身具备强大的自然语言处理能力,但将其有效应用于实际场景面临诸多挑战,例如与外部数据源集成、管理对话上下文、构建复杂的交互流程等。LangChain 应运而生,填补了从模型到应用之间的空白,极大地降低了开发门槛,成为 LLM 开发领域最受欢迎的框架之一。
1.2 核心思想
LangChain 的核心在于将不同的组件巧妙组合或集成。通过一系列工具、组件和接口,它能将大语言模型与其他功能模块连接,还能整合外部 API、数据库等资源,如同搭建积木一般,开发者可利用这些现成组件,快速搭建出复杂且功能丰富的大语言模型应用,实现从简单文本生成到复杂智能交互系统等多样化应用的开发。
2. LangChain 框架剖析
2.1 核心开源库
-
langchain - core:作为 LangChain 的基础抽象层,定义了基础概念与接口,其中 LangChain 表达式语言(LCEL)是一大亮点。LCEL 让开发者能以更自然、灵活的方式与语言模型交互,方便描述复杂逻辑与请求,为构建复杂应用逻辑奠定基础。
-
langchain - community:该库积极集成第三方服务和工具,极大拓展了 LangChain 的功能边界。借助这些集成,开发者能够轻松接入各类外部资源与服务,增强应用的功能,例如接入特定领域的数据库、调用专业的 API 接口等。
-
合作伙伴包:针对 OpenAI、Anthropic 等特定大型语言模型服务提供商,LangChain 提供轻量级独立包,且仅依赖于 langchain - core。这使得开发者可按需灵活选择并集成不同供应商的模型,避免引入不必要的依赖,在模型选择上拥有更多自主性。
2.2 关键组件
-
链(Chains):链是 LangChain 中构建应用认知架构的关键元素之一,它建立起利用语言模型的全面流程。一个链能够接收用户查询作为输入,处理语言模型的响应,并将输出返回给用户。比如 LLMChain,使用单个语言模型,接收用户查询并将其发送给模型处理后返回响应;Sequential Chains 可按特定顺序连接多个处理组件,实现复杂流程处理;Router Chain 能依据条件将查询路由到不同子链,增强应用的灵活性与智能性。
-
代理(Agents):代理可理解为智能助手,它能根据用户输入,决定使用哪些工具以及如何使用这些工具来解决问题。例如在处理用户复杂问题时,代理可调用 Google 搜索获取最新信息、使用 Python REPL 执行代码片段辅助解答等。LangChain 中的代理通过思考链决定行动步骤,配合丰富的工具箱(如 Google 搜索、Requests、Wikipedia 等工具),显著提升解决复杂问题的能力。
-
检索策略:在处理大量文本数据时,索引和检索器发挥关键作用。索引是高效存储和组织文档的数据结构,用于快速搜索;检索器利用索引在用户查询时定位和检索相关文档。在 LangChain 中,主要基于向量数据库构建索引,常见方式是基于嵌入向量的索引,通过将文本转换为向量形式存储,实现高效的相似性检索,帮助模型获取相关信息以生成更准确的回答。
2.3 生态系统组件 - LangSmith
LangSmith 是与 LangChain 紧密集成的开发者平台,为 LLM 应用提供调试、测试、评估和监控一站式解决方案。在开发阶段,开发者可利用其调试功能快速定位问题;测试时,通过提供的工具对应用性能进行全面测试;评估环节,借助丰富指标评估应用效果;在生产环境中,实时监控应用运行状况,收集数据并依据数据做出优化决策,确保应用在生产环境中的稳定性与效率,支持应用的持续优化。
2.4 LangServe 功能
LangServe 可将任何链路便捷地转换为 API,极大简化部署流程。这意味着基于 LangChain 开发的 LLM 功能,能以 RESTful API 形式开放给其他系统或用户。无论是内部系统集成,还是面向外部用户提供服务,都能无缝融入网页应用、移动应用或其他软件产品中,有力拓展了 AI 技术的应用范围和影响力,方便不同平台、不同类型的用户调用基于 LangChain 开发的应用功能。
3. LangChain 的运用场景
3.1 聊天机器人领域
-
构建智能客服:利用 LangChain 的上下文管理功能,如 ConversationBufferMemory 等多种内存链,能够保留对话历史,让聊天机器人在与客户交流过程中,根据之前的对话内容理解客户意图,提供更连贯、准确且个性化的回答。例如客户咨询产品售后问题,机器人可依据之前沟通中了解到的客户购买信息、咨询记录等提供针对性解决方案,提升客户服务体验。
-
打造虚拟助手:结合 LangChain 的代理和工具集成能力,虚拟助手不仅能理解自然语言指令,还可调用各种外部工具完成任务。如用户要求查询附近餐厅并预订座位,虚拟助手可调用地图 API 获取餐厅信息,调用餐厅预订 API 完成座位预订,为用户提供一站式便捷服务。
3.2 文档分析场景
-
文档问答系统:通过面向文档的对话机器人实战,借助 LangChain 中的 RAG(检索增强生成)技术,先从文档中检索与用户问题相关的内容,再结合大语言模型生成回答。例如企业内部知识库文档问答,员工提问时,系统可快速从大量文档中找到相关资料并生成准确答案,提高知识获取效率。
-
文档摘要生成:对于长篇文档,利用 LangChain 的文档加载器、转换器和文本分割器等组件,将文档预处理后,采用特定文档处理策略(如 stuff 策略、map - reduce 策略、refine 策略),结合语言模型生成简洁明了的文档摘要,帮助用户快速了解文档核心内容,在处理学术文献、新闻报道等大量文本时尤为实用。
3.3 代码生成方面
-
辅助编程:开发者在编码过程中,可借助 LangChain 与大语言模型交互。例如当遇到编程难题时,向基于 LangChain 构建的工具输入问题描述,工具利用模型生成代码示例或解决方案思路,还可调用代码分析工具对生成代码进行审查,提升编程效率与代码质量。
-
代码自动生成:在一些特定场景下,如根据功能需求自动生成代码框架。通过精心设计提示词,结合 LangChain 与代码生成模型,输入功能描述信息,模型可自动生成相应的代码框架,减少开发者基础代码编写工作量,加速开发进程,尤其适用于一些重复性代码生成任务。
4. LangChain 的优势与局限性
4.1 优势
-
简化开发流程:提供丰富的现成构建模块和组件,开发者无需从头开始编写复杂代码,通过复用这些组件,能快速启动项目。例如构建聊天机器人,可直接使用对话相关的内存链组件处理上下文,大大缩短开发周期,即使是初次接触 LLM 应用开发的人员也能快速上手。
-
强大的集成能力:能与多种大模型 API 集成(OpenAI、Azure、Google 等),还可整合外部数据源、工具和服务。这使得开发者可根据项目需求灵活选择模型,同时接入各种所需资源,丰富应用功能,打造更具竞争力的应用。
-
灵活性与定制性:提供灵活定制接口,开发者可根据具体需求调整模型行为、输出格式等。比如在内容生成应用中,可定制生成文本的风格、长度等参数,满足不同用户和场景的多样化需求。
4.2 局限性
-
依赖外部模型:应用性能很大程度依赖所集成的外部大语言模型。若模型出现故障、性能波动或服务中断,可能影响应用正常运行。且使用一些商业模型可能产生较高成本,限制部分对成本敏感项目的应用。
-
数据处理挑战:在处理海量数据或复杂格式数据时,虽然提供了相关工具和组件,但数据预处理、索引构建等环节仍可能面临性能瓶颈和技术难题。例如在构建大规模文档索引时,索引构建时间和存储空间可能成为问题。
-
安全与隐私问题:当集成外部服务和处理敏感数据时,存在安全与隐私风险。如数据传输过程中的泄露风险、外部 API 的安全漏洞等,需要开发者采取额外措施保障数据安全和用户隐私。
5. 总结与展望
LangChain 作为大语言模型应用开发的重要框架,通过其独特的设计和丰富的功能,为开发者在构建智能应用道路上提供了强大助力,在众多领域展现出巨大应用潜力。随着技术不断发展,未来 LangChain 有望在模型集成优化、数据处理效率提升、安全隐私保障等方面持续改进。同时,随着其生态系统不断完善,将吸引更多开发者参与,进一步拓展应用边界,推动大语言模型应用在更多领域落地生根,为人们的生活和工作带来更多智能化变革。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。