前言
人工智能特训营笔记
线性回归知识点
一、sklearn
scikit-learn 是基于 Python 语言的机器学习工具
简单高效的数据挖掘和数据分析工具
可供大家在各种环境中重复使用
建立在 NumPy ,SciPy 和 matplotlib 上
二、使用步骤
1.引入库
代码如下(示例):
from sklearn.linear_model import LinearRegression,Ridge #导入线性回归学习模型
from sklearn.preprocessing import PolynomialFeatures, StandardScaler #导入线性回归预处理模型 多项式特征和标准化
from sklearn.metrics import mean_squared_error #导入学习指标(均方误差)
2.使用
代码如下(示例):
poly = PolynomialFeatures(degree=3, include_bias=False) #创建一个三项线性模型 degree 多项式特征 include_bias是否包含偏置项(截距)一般sklearn会自动训练截距,所以为false
X_train_poly = poly.fit_transform(X_train) #预处理
scaler = StandardScaler()
X_train_poly_scaled = scaler.fit_transform(X_train_poly) #对特征进行标准化操作 一般逻辑为各自减去当前列的均值然后除以当列的标准差,保证所有特征在一个量级上
reg3 = LinearRegression() #线性回归学习模型
reg3.fit(X_train_poly_scaled, y_train) #学习
y_train_pred3 = reg3.predict(X_train_poly_scaled) #预测
mse3 = mean_squared_error(y_train_pred3, y_train) #指标