欠拟合和过拟合课程笔记


前言

人工智能特训营笔记


线性回归知识点

一、sklearn

scikit-learn 是基于 Python 语言的机器学习工具

简单高效的数据挖掘和数据分析工具
可供大家在各种环境中重复使用
建立在 NumPy ,SciPy 和 matplotlib 上

二、使用步骤

1.引入库

代码如下(示例):

from sklearn.linear_model import LinearRegression,Ridge #导入线性回归学习模型 
from sklearn.preprocessing import PolynomialFeatures, StandardScaler #导入线性回归预处理模型 多项式特征和标准化
from sklearn.metrics import mean_squared_error #导入学习指标(均方误差)

2.使用

代码如下(示例):

poly = PolynomialFeatures(degree=3, include_bias=False) #创建一个三项线性模型  degree 多项式特征  include_bias是否包含偏置项(截距)一般sklearn会自动训练截距,所以为false
X_train_poly = poly.fit_transform(X_train) #预处理
scaler = StandardScaler()
X_train_poly_scaled = scaler.fit_transform(X_train_poly) #对特征进行标准化操作 一般逻辑为各自减去当前列的均值然后除以当列的标准差,保证所有特征在一个量级上
reg3 = LinearRegression() #线性回归学习模型
reg3.fit(X_train_poly_scaled, y_train) #学习
y_train_pred3 = reg3.predict(X_train_poly_scaled) #预测
mse3 = mean_squared_error(y_train_pred3, y_train) #指标


总结

以上就是学习线性回归课程的知识点。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值