三角形个数的问题

这篇博客探讨了随着边长增加,可以形成的三角形数量的规律。通过边长1到4的情况分析,作者发现每个边长的三角形数量可以通过边长的平方、边长的一半以及2的幂次来计算。提出了两个可能的公式:x(n)=x(n-1)-(n-1)^2+n^2+2^(n-1)-1和x(n)=n*(n+1)*(2*n+1)/6-n*(n+1)/2+2*(n-1)+1,供读者进一步讨论和验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如题:

当边长为1时,有1个三角形;

边长为2时,有5个三角形;

边长为3时,有13个三角形;

边长为4时,有27个三角形;

那么边长为n时,有多少个三角形?


乍一看 ,当时没有总结出规律,后来将其分解,有规律了

边长为1    边长为1的三角形1个;

边长为2    边长为1的三角形2*2个 边长为2的三角形2*1-1个

边长为3    边长为1的三角形3*3个 边长为2的三角形2*2-1个 边长为1的三角形1个

边长为4    边长为1的三角形4*4个 边长为2的三角形2*2*2-1个 边长为2的三角形2*2-1个 边长为1的三角形1个


所以解1(供讨论)

x(n)=x(n-1)-(n-1)^2+n^2+2^(n-1)-1;


另外解2(供讨论)

x(n)=n*(n+1)*(2*n+1)/6-n*(n+1)/2+2*(n-1)+1


关键在于分解。



如果有不对的地方或者有更好的方法欢迎批评指正。




 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值