如题:
当边长为1时,有1个三角形;
边长为2时,有5个三角形;
边长为3时,有13个三角形;
边长为4时,有27个三角形;
那么边长为n时,有多少个三角形?
乍一看 ,当时没有总结出规律,后来将其分解,有规律了
边长为1 边长为1的三角形1个;
边长为2 边长为1的三角形2*2个 边长为2的三角形2*1-1个
边长为3 边长为1的三角形3*3个 边长为2的三角形2*2-1个 边长为1的三角形1个
边长为4 边长为1的三角形4*4个 边长为2的三角形2*2*2-1个 边长为2的三角形2*2-1个 边长为1的三角形1个
所以解1(供讨论)
x(n)=x(n-1)-(n-1)^2+n^2+2^(n-1)-1;
另外解2(供讨论)
x(n)=n*(n+1)*(2*n+1)/6-n*(n+1)/2+2*(n-1)+1
关键在于分解。
如果有不对的地方或者有更好的方法欢迎批评指正。