《地理信息系统原理》笔记/期末复习资料(3. GIS的地理数学基础)

文章详细介绍了GIS中地图投影的基础知识,包括地球椭球体、大地控制、地图投影的分类、变形和应用。重点讨论了等角、等面积和任意投影的特性,以及高斯-克吕格投影和正轴等角圆锥投影在中国GIS中的应用。地图投影的选择考虑了地理位置、内容、出版方式等因素,中国的GIS主要采用高斯-克吕格投影和正轴等角圆锥投影,以保证精度和实用性。

目录

3. GIS的地理数学基础

3.1. 地球椭球体与大地控制

3.1.1. 地球椭球体

3.1.2. 大地控制

3.2. 地图投影概述

3.2.1. 地图投影的基本问题

3.2.2. 地图投影的变形

3.2.3. 地图投影的分类

3.2.4. 地图投影与GIS的关系

3.2.5. GIS中地图投影的配置与设计

3.3. 地图投影的应用

3.3.1. 地图投影的选择

3.3.2. 中国GIS中地图投影的应用

3.4. 习题


3. GIS的地理数学基础

3.1. 地球椭球体与大地控制

3.1.1. 地球椭球体

地球表面是一个高低不平、极其复杂的表面。在地球表面上分布着山地、盆地及海洋,其中海洋的面积约占71%,陆地约占29%。从高达8844.43m的世界最高点――珠穆朗玛峰,到深达11022m的太平洋西部马里亚纳海沟,两者相差近两万米。地球表面的这种复杂性给测绘工作者带来极大的不便,所以人们必须寻找一个能用数学公式表示而又基本符合地球自然表面的统一依据面来代替这个自然表面,这样处理测量数据和制图就变得方便了。

假定海水处于“完全”静止状态,把海水面延伸到大陆上去,形成包围整个地球的连续表面,我们通常称它为大地水准面,它包围的球体称为大地体。大地测量中用水准量测方法得到地面上各点的高程就是依据这个水准面来确定的,大地水准面上任何一点的铅垂线都与大地水准面成正交,而铅垂线的方向又受地球内部质量分布不均匀和地面高低起伏的影响,致使大地水准面产生微小起伏,所以大地水准面仍是一个不规则的、不能用简单数学公式表达的曲面。

图 3-1 地球自然表面、大地水准面和地球椭球面的关系

为了便于测量成果的计算和制图工作的需要,我们选用一个大小和形状同 大地体极为近似的、可以用数学方法表 达的旋转椭球来代替。旋转椭球是以椭 圆的短轴(地轴)为轴旋转而成的。

图3-1表明在局部地段上地球的自 然表面、大地水准面和地球椭球面三者 的位置关系。凡与局部地区(一个或几 个国家)的大地水准面符合得最好得旋转椭球,称为“参考椭球”。

地球椭球的形状和大小常用长半径 a(赤道半径)、短半径b(极轴半径)、扁率α、 第一偏心率e、第二偏心率e′表示,这 些数据又称为椭球元素。

由于采用不同的资料计算,各国使用的椭球体的元素是不同。我国1952年以前采用海福特椭球,从1953年起,改用克拉索夫斯基椭球,1978年开始采用国际大地测量协会所推荐的“1975年国际椭球”。并以此建立了我国新的、独立的大地坐标系。常见的地球椭球体的数据见表3-1。

表 3-1 常见地球椭球体数据

3.1.2. 大地控制

大地控制的主要任务是确定地面点在地球椭球体上的位置,包括点在地球椭球面上的平面位置和点到大地水准面的高度,即经纬度和高程。为此,必须首先了解确定点位的坐标系。

地理坐标系

图 3-2 地理坐标系

地理坐标系的构成见图3-2。设PP′为地球的旋转轴(又称地轴),它与椭球面的交点P,P′称为地球的北极和南极。过旋转轴的平面与 椭球面的截线叫经线或子午线(如图中 MPM′A′P′A椭圆)。国际上公认通过英国格 林尼治天文台的经线(PEFP′)为首(零)子 午线。所以,M点的经度即为过该点的子午 圈截面与起始子午面的交角,用λ表示。并 规定由首子午线起,向东为正,称“东经”, 由00~+1800;向西为负,称西经,由00~ -1800。垂直于地轴并通过地心的平面叫赤 道平面,它和椭球面相交的大圆圈(交线), 称为赤道(A′FGA)。过M点作平行于赤道 面与椭球面的截线,称为纬线圈或平行圈 (MEM′)。过M点的法线(ML)与赤道面的交角(∠MLA),叫作地理纬度,用φ表示。 纬度以赤道为00,向北、南极各以900计算,向北为正,称“北纬”,其值由00~+900;向南为负,称“南纬”,纬度由00~-900。 地面上任意点M的地理位置可由经度λ和纬度φ来确定,记成M(λ,φ)。经线和纬线是地球表面上两组正交(相交为900)的曲线,这两组正交线构成的坐标称为地理坐标系。

中国大地坐标系

世界各国分别设立了各自的坐标原点,建立了不同的坐标系,这里只简要介绍我国的大地坐标系的情况。

(1)1954年北京坐标系:解放初期,从苏联1942年坐标系联测并经过平差计算而引伸到我国,建立了1954年北京坐标系。该坐标系的原点在苏联西部的普尔科夫,采用克拉索夫斯基椭球元素。经过几十年的实践证明,使用克拉索夫斯基椭球体,已经不能很好地满足我国大地测量工作的要求。存在以下几方面的问题:

  1. 克拉索夫斯基椭球体与1975年国际大地测量协会推荐的地球椭球(ICA-75椭球)相比,其长轴a约大105m。这样必然会给理论研究和实际工作带来诸多不便。

  2. 克拉索夫斯基椭球面相对大地水准面,自西向东有较大的系统性倾斜。大地水准面差距最大可达+68m,并且出现在我国经济发达的东部沿海地区。这样必然给大地测量数据的归算工作带来麻烦。

  3. 在处理重力测量资料中所常用的计算公式,也与克拉索夫斯基椭球体不匹配。

为了适应我国大地测量工作深入发展的需要,我国于1978年决定建立中国国家大地坐标系。

(2)1980年国家大地坐标系:选用了1975年国际大地测量协会推荐的参考椭球,其具体参数为a=6378140m,

image0

 =1/298.257。采用ICA-75椭球,可使几何大地测量与物理大地测量所使用的椭球一致起来。1980年国家大地原点设在我国中部西安市附近的泾阳县境内。由于大地原点在我国居中位置,因此可以减少坐标传递误差的积累。

参考椭球体和大地原点确定之后,便可进行椭球体定位和精确测量大地原点坐标,进而再以大地原点坐标为基准,推算其他大地点坐标。注意:不同国家由于采用的参考椭球及定位方法不同,因此同一地面点在不同坐标系中大地坐标值也不相同。

高程系

高程分绝对高程(又称海拔高程)和相对高程。绝对高程是指由高程基准面起算的地面点的垂直高度;地面点之间的高程差,称为相对高程(简称高差)。高程基准面是根据验潮 站所确定的多年平均海水面而决定的(图3-3)。

图 3-3 高程起算及高程

实践证明,在不同地点的验潮站所得的平均海水面之间存在着差异,选用不同的基准面就有不同的高程系统。例如,我国曾经使用过的1954年黄海平均海水面、坎门平均海水面、吴淞零点、废黄河零点等多个高程系统,均分别为不同地点的验潮站所得的平均海水面。一个国家通常只能采用一个平均海水面作为统一的高程基准面。

(1). 1956年黄海高程系: 我国规定采用以青岛验潮站1950年~1956年测定的黄海平均海水面,作为我国统一高程基准面,凡由该基准面起算的高程,统称为“1956年黄海高程系”。其水准原点设在青岛市的观家山上,对黄海平均海水面的高程值为72.298m。国家各级的高程控制点(水准点、埋石点等)的高程数值,都是由该点起,通过水准测量等方法传算过去,构成全国的高程控制网,为测绘地图提供了必要条件。

(2). 1985年国家高程基准: 由于观测数据的积累,黄海平均海水面发生了微小变化,国家决定启用新的高程系,并命名为“1985年国家高程基准”。该系统是采用青岛验潮站1952~1979年潮汐观测计算的平均海水面,国家水准原点的高程值为72.260m,使高程控制点的高程产生了微小变化,但对已成地图上的等高线高程的影响可以不计,可认为是没有变化。

大地控制网

在广阔的区域上进行测量和制图,不可能独家一次完成,必须要由许多单位分期分批完成,为了保证测量成果的精度符合国家的统一要求,首先必须在全国范围内选取若干具有控制意义的点,然后精确测定其平面位置和高程,构成统一的大地控制网。大地控制网由平面控制网和高程控制网组成。

(1)平面控制网

又称水平控制网,其测量的主要目的是确定控制点的平面位置,主要的方法为三角测量和导线测量。

三角测量,是在地面上选择一系列控制点,并建立起相互连接的三角形,组成三角锁和三角网,测量一段精确的距离作为起始边,在这个边的两端点,采用天文观测的方法确定起点位,精确测定各三角形的内角。根据以上已知条件,利用正

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@HNUSTer_CUMTBer

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值