深度学习 - ResNet

本文探讨了深度网络的退化问题,解释了ResNet的基本网络结构,通过引入快捷连接解决了深层网络性能下降的问题。ResNet优化了恒等映射,使其更易于调整权重,从而在保持较低复杂度的同时提升了网络性能,超越了VGG和GoogleNet等其他网络。
摘要由CSDN通过智能技术生成

1. 深度网络的退化问题

ResNet最初的想法在于: 在一个训练集上,深层网络不应该比浅层网络性能差,因为只需要将多出来的层全部优化为恒等映射,则深层网络等价于浅层网络。但论文中的试验又表明无论是在训练集还是在测试集上,50层的网络性能远差于20层的网络,这似乎是一个悖论。这一问题被称为深度网络的退化问题(degradation problem)。

 

2. ResNet基本网络结构


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值