CINTA 第五次作业

5. 定义映射 ϕ : G ↦ G 为: g ↦ g 2 , 请证明 ϕ 是一种群同态当且仅当 G 是阿贝尔群。 5.定义映射\phi:G\mapsto G 为:g\mapsto g^{2},请证明\phi 是一种群同态当且仅当 G 是阿贝尔群。 5.定义映射ϕ:GG为:gg2,请证明ϕ是一种群同态当且仅当G是阿贝尔群。
证明:任取 g 1 、 g 2 ∈ G , 则 证明:任取g_{1}、g_{2}\in G,则 证明:任取g1g2G,
( 1 )先证明: ϕ 是一种群同态 ⇐ G 是阿贝尔群。 (1)先证明:\phi 是一种群同态\Leftarrow G 是阿贝尔群。 1)先证明:ϕ是一种群同态G是阿贝尔群。
ϕ ( g 1 ⋅ g 2 ) = ( g 1 ⋅ g 2 ) 2 = g 1 g 2 g 1 g 2 \phi(g_{1}·g_{2})=(g_{1}·g_{2})^{2}=g_{1}g_{2}g_{1}g_{2} ϕ(g1g2)=(g1g2)2=g1g2g1g2
因为 G 是阿贝尔群,所以 g 1 g 2 g 1 g 2 = g 1 g 1 g 2 g 2 g = g 1 2 g 2 2 = ϕ ( g 1 ) ⋅ ϕ ( g 2 ) 因为G是阿贝尔群,所以g_{1}g_{2}g_{1}g_{2}=g_{1}g_{1}g_{2}g_{2}g=g_{1}^{2}g_{2}^{2}=\phi(g_{1})·\phi(g_{2}) 因为G是阿贝尔群,所以g1g2g1g2=g1g1g2g2g=g12g22=ϕ(g1)ϕ(g2)
所以, ϕ 是群同态 所以,\phi 是群同态 所以,ϕ是群同态
( 2 )再证明: ϕ 是一种群同态 ⇒ G 是阿贝尔群。 (2)再证明:\phi 是一种群同态\Rightarrow G 是阿贝尔群。 2)再证明:ϕ是一种群同态G是阿贝尔群。
ϕ ( g 1 ⋅ g 2 ) = ( g 1 ⋅ g 2 ) 2 = g 1 g 2 g 1 g 2 \phi(g_{1}·g_{2})=(g_{1}·g_{2})^{2}=g_{1}g_{2}g_{1}g_{2} ϕ(g1g2)=(g1g2)2=g1g2g1g2
ϕ ( g 1 ) ⋅ ϕ ( g 2 ) = g 1 2 g 2 2 = g 1 g 1 g 2 g 2 \phi(g_{1})·\phi(g_{2})=g_{1}^{2}g_{2}^{2}=g_{1}g_{1}g_{2}g_{2} ϕ(g1)ϕ(g2)=g12g22=g1g1g2g2
因为 ϕ 是一种群同态,所以 ϕ ( g 1 ⋅ g 2 ) = ϕ ( g 1 ) ⋅ ϕ ( g 2 ) ,即 因为\phi 是一种群同态,所以\phi(g_{1}·g_{2})=\phi(g_{1})·\phi(g_{2}),即 因为ϕ是一种群同态,所以ϕ(g1g2)=ϕ(g1)ϕ(g2),即
g 1 g 2 g 1 g 2 = g 1 g 1 g 2 g 2 g_{1}g_{2}g_{1}g_{2}=g_{1}g_{1}g_{2}g_{2} g1g2g1g2=g1g1g2g2
该等式左右两边同时左乘 g 1 − 1 ,同时右乘 g 2 − 1 ,得 该等式左右两边同时左乘g_{1}^{-1},同时右乘g_{2}^{-1},得 该等式左右两边同时左乘g11,同时右乘g21,得
g 2 g 1 = g 1 g 2 g_{2}g_{1}=g_{1}g_{2} g2g1=g1g2
所以, G 是阿贝尔群。 所以,G是阿贝尔群。 所以,G是阿贝尔群。

6. 设 ϕ : G ↦ H 是一种群同态。请证明:如果 G 是循环群,则 ϕ ( G ) 也是循环群;如果 G 是交换群,则 ϕ ( G ) 也是交换群。 6.设\phi:G\mapsto H是一种群同态。请证明:如果 G 是循环群,则 \phi(G)也是循环群;如果G是交换群,则\phi(G) 也是交换群。 6.ϕ:GH是一种群同态。请证明:如果G是循环群,则ϕ(G)也是循环群;如果G是交换群,则ϕ(G)也是交换群。
证明:( 1 )先证明若 G 是循环群,则 ϕ ( G ) 也是循环群 证明:(1)先证明若G是循环群,则\phi(G)也是循环群 证明:(1)先证明若G是循环群,则ϕ(G)也是循环群
设 g 是 G 的生成元,那么对 ∀ g ′ ∈ G , ∃ k ∈ Z , s t g k = g ′ 设g是G的生成元,那么对\forall g'\in G,\exists k\in Z,st g^{k}=g' gG的生成元,那么对gG,kZ,stgk=g
又因为 ϕ 是群同态,所以 又因为\phi 是群同态,所以 又因为ϕ是群同态,所以
ϕ ( g ′ ) = ϕ ( g k ) = ( ϕ ( g ) ) k \phi(g')=\phi(g^{k})=(\phi(g))^{k} ϕ(g)=ϕ(gk)=(ϕ(g))k
即对 ∀ g ′ ∈ G , ∃ k ∈ Z , s t ( ϕ ( g ) ) k = ϕ ( g ′ ) 即对\forall g'\in G,\exists k\in Z,st (\phi(g))^{k}=\phi(g') 即对gG,kZ,st(ϕ(g))k=ϕ(g)
所以, ϕ ( g ) 是群 ϕ ( G ) 的生成元,即群 ϕ ( G ) 是循环群 所以,\phi(g)是群\phi(G)的生成元,即群\phi(G)是循环群 所以,ϕ(g)是群ϕ(G)的生成元,即群ϕ(G)是循环群
( 2 ) 再证明若 G 是交换群,则 ϕ ( G ) 也是交换群 (2)再证明若G是交换群,则\phi(G)也是交换群 (2)再证明若G是交换群,则ϕ(G)也是交换群
任取 g 1 、 g 2 ∈ G ,因为 ϕ 是群同态,所以 任取g_{1}、g_{2}\in G,因为\phi 是群同态,所以 任取g1g2G,因为ϕ是群同态,所以
ϕ ( g 1 ⋅ g 2 ) = ϕ ( g 1 ) ⋅ ϕ ( g 2 ) \phi(g_{1}·g_{2})=\phi(g_{1})·\phi(g_{2}) ϕ(g1g2)=ϕ(g1)ϕ(g2)
而群 G 是交换群,有 g 1 g 2 = g 2 g 1 ,所以 而群G是交换群,有g_{1}g_{2}=g_{2}g_{1},所以 而群G是交换群,有g1g2=g2g1,所以
ϕ ( g 1 ⋅ g 2 ) = ϕ ( g 2 ⋅ g 1 ) = ϕ ( g 2 ) ⋅ ϕ ( g 1 ) \phi(g_{1}·g_{2})=\phi(g_{2}·g_{1})=\phi(g_{2})·\phi(g_{1}) ϕ(g1g2)=ϕ(g2g1)=ϕ(g2)ϕ(g1)
即 即
ϕ ( g 1 ) ⋅ ϕ ( g 2 ) = ϕ ( g 2 ) ⋅ ϕ ( g 1 ) \phi(g_{1})·\phi(g_{2})=\phi(g_{2})·\phi(g_{1}) ϕ(g1)ϕ(g2)=ϕ(g2)ϕ(g1)
群 ϕ ( G ) 是交换群。 群\phi(G)是交换群。 ϕ(G)是交换群。

7. 证明:如果 H 是群 G 上指标为 2 的子群,则 H 是 G 的正规子群。 7.证明:如果 H 是群 G 上指标为 2 的子群,则 H 是 G 的正规子群。 7.证明:如果H是群G上指标为2的子群,则HG的正规子群。
证明:因为 H 是群 G 上指标为 2 的子群,即群 G 被两个陪集划分。 证明:因为 H 是群 G 上指标为 2 的子群,即群G被两个陪集划分。 证明:因为H是群G上指标为2的子群,即群G被两个陪集划分。
若 g ∈ H ,则 g H = H = H g ,原命题成立。 若g\in H,则gH=H=Hg,原命题成立。 gH,则gH=H=Hg,原命题成立。
若 g ∉ H ,则群 G 被左陪集 g H 和 H 划分,群 G 被右陪集 H g 和 H 划分 若g\not\in H,则群G被左陪集gH和H划分,群G被右陪集Hg和H划分 gH,则群G被左陪集gHH划分,群G被右陪集HgH划分
同样有 g H = H g 同样有gH = Hg 同样有gH=Hg
所以, H 是 G 的正规子群。 所以,H 是 G 的正规子群。 所以,HG的正规子群。

8. 给定任意群 G , H 是群 G 的正规子群。请证明,如果群 G 是阿贝尔群,则商群 G / H 也是阿贝尔群。 8.给定任意群 G,H 是群 G 的正规子群。请证明,如果群 G 是阿贝尔群,则商群 G/H也是阿贝尔群。 8.给定任意群GH是群G的正规子群。请证明,如果群G是阿贝尔群,则商群G/H也是阿贝尔群。
证明:任取 g 1 、 g 2 ∈ G ,则 g 1 H 、 g 2 H ∈ G / H 证明:任取g_{1}、g_{2}\in G,则g_{1}H、g_{2}H\in G/H 证明:任取g1g2G,则g1Hg2HG/H
因为群 G 是阿贝尔群,而 H 是群 G 的正规子群,所以 因为群G是阿贝尔群,而H是群G的正规子群,所以 因为群G是阿贝尔群,而H是群G的正规子群,所以
g 1 H ⋅ g 2 H = g 1 g 2 H H = g 2 g 1 H H = g 2 H ⋅ g 1 H g_{1}H·g_{2}H=g_{1}g_{2}HH=g_{2}g_{1}HH=g_{2}H·g_{1}H g1Hg2H=g1g2HH=g2g1HH=g2Hg1H
即商群 G / H 也是阿贝尔群。 即商群 G/H也是阿贝尔群。 即商群G/H也是阿贝尔群。

9. 给定任意群 G , H 是群 G 的正规子群。请证明,如果群 G 是循环群,则商群 G / H 也是循环群。 9.给定任意群 G,H 是群 G 的正规子群。请证明,如果群 G 是循环群,则商群 G/H也是循环群。 9.给定任意群GH是群G的正规子群。请证明,如果群G是循环群,则商群G/H也是循环群。
证明:设 g 是群 G 的生成元,那么对 ∀ g ′ ∈ G , ∃ k ∈ Z , s t g k = g ′ 证明:设g是群G的生成元,那么对\forall g'\in G,\exists k\in Z,st g^{k}=g' 证明:设g是群G的生成元,那么对gG,kZ,stgk=g
且 g H 、 g ′ H ∈ G / H , 根据商群的良定义,有 且gH、g'H\in G/H,根据商群的良定义,有 gHgHG/H,根据商群的良定义,有
g ′ H = g k H = ( g H ) k g'H=g^{k}H=(gH)^{k} gH=gkH=(gH)k
所以 g H 是商群 G / H 的生成元,商群 G / H 是循环群。 所以gH是商群G/H的生成元,商群 G/H是循环群。 所以gH是商群G/H的生成元,商群G/H是循环群。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值