随着交通安全问题日益严重,驾驶员的行为监控成为提高道路安全性的关键因素之一。传统的驾驶行为监测方法多依赖于硬件设备或人工监控,存在高成本、低效率和易出错等问题。本文提出了一种基于YOLOv8深度学习模型的智慧交通驾驶行为检测与语音提醒系统,旨在通过实时视频监控,自动识别并提醒驾驶员的危险行为,从而提高驾驶安全性。
该系统通过收集包含不同驾驶行为的数据集,采用YOLOv8模型进行训练,以实现对驾驶员“分心驾驶”、“疲劳驾驶”、“吃东西”、“未系安全带”、“已系安全带”和“吸烟”等行为的高效检测。系统采用PyQt5框架设计用户界面,提供实时行为监测、行为分类与语音提醒功能。结合视频流数据和实时处理,系统能够准确判断驾驶员的状态,并通过语音提示及时提醒驾驶员纠正不安全行为。
实验结果表明,所提方法在准确度和实时性方面具有较好的表现,能够有效地提升驾驶员的安全意识,降低交通事故发生的风险。该系统不仅具有较高的应用价值,还可以为智能交通、自动驾驶以及车辆安全辅助系统的进一步发展提供技术支持。
算法流程
项目数据
通过搜集关于数据集为各种各样的驾驶行为相关图像,并使用Labelimg标注工具对每张图片进行标注,分6检测类别,分别是’驾驶员已经分心’, ‘驾驶员已经疲劳’, ‘驾驶员在吃东西’, ‘驾驶员未系安全带’, ‘驾驶员已系安全带’, ‘驾驶员正在吸烟’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。
注意:这里的中心点坐标、宽和高都是相对数据!!!
存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。
完成后可进行后续的yolo训练方面的操作。
模型训练
模型的训练、评估与推理
1.YOLOv8的基本原理
YOLOv8是一个SOTA模型,它建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性,使其成为实现目标检测、图像分割、姿态估计等任务的最佳选择。其具体创新点包括一个新的骨干网络、一个新的Ancher-Free检测头和一个新的损失函数,可在CPU到GPU的多种硬件平台上运行。
YOLOv8是Yolo系列模型的最新