基于YOLOv8深度学习的智慧交通驾驶员安全带检测与语音提醒系统(PyQt5界面+数据集+训练代码)

项目介绍

为了提升驾驶安全性,减少因未系安全带导致的交通事故伤害,本研究设计并实现了一种基于YOLOv8深度学习的驾驶员安全带检测与语音提醒系统。该系统充分利用先进的目标检测技术,通过监控视角对驾驶员的安全带佩戴状态进行实时识别,并结合PyQt5界面,为用户提供了直观、便捷的交互体验。

数据集包含驾驶员“未系安全带”和“系安全带”两种状态的多样化图像,涵盖监控视角下不同性别、年龄和驾驶场景。通过对图像进行标注与预处理,确保数据集具有高质量和代表性,进而用于训练和评估YOLOv8模型。在模型训练过程中,研究团队通过优化参数设置、数据增强和调整网络结构,显著提高了模型的泛化能力,使其在不同光照条件、驾驶员姿态和动作变化下,均能够实现鲁棒的检测效果。

实验结果显示,该系统在监控视角下的未系安全带状态检测中,具有较高的精度(Precision)和召回率(Recall),能够及时、准确地识别驾驶员行为,并通过语音提示提醒驾驶员系好安全带,进一步强化了驾驶安全行为的规范性。本研究详细阐述了系统的模型设计过程、数据集构建方法、PyQt5界面开发以及语音提醒功能的实现。总体而言,该系统为智能交通安全领域提供了一种高效、可靠的解决方案,具备良好的实际应用价值。

算法流程

深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。

项目数据

通过搜集关于数据集为各种各样的驾驶员安全带相关图像,并使用Labelimg标注工具对每张图片进行标注,分2检测类别,分别是’驾驶员未系安全带’, ‘驾驶员已系安全带’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。

注意:这里的中心点坐标、宽和高都是相对数据!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值