随着信息技术和人工智能的快速发展,智慧国防成为提高国家安全防御能力的重要手段。本文提出了一种基于YOLOv8深度学习算法的战斗机目标检测与识别系统,旨在通过实时分析空中监控图像,实现对不同类型战斗机的自动检测与识别。该系统结合了先进的计算机视觉技术和深度学习模型,能够快速准确地检测战斗机目标并进行分类,从而为国防监控、预警及反应提供智能化支持。
为了验证该系统的有效性,我们构建了一个包含多种战斗机模型的图像数据集,涵盖F-16、MiG-31、F-35等多种现代战斗机。数据集通过对不同环境下拍摄的战斗机图像进行标注,确保了模型训练的多样性和高效性。基于该数据集,我们使用YOLOv8模型进行训练,并对模型的精度和实时性进行了评估,实验结果表明,YOLOv8在战斗机目标检测任务中具有良好的性能,能够在较短时间内完成目标检测任务,并保持较高的检测精度。
本研究还结合了PyQt5开发的用户界面,提供了一个直观易用的系统平台。该平台支持用户上传图像或视频流,并实时显示检测结果,提供友好的交互体验。此外,系统还支持对不同战斗机的分类识别,并能根据检测结果进行相应的反应。通过实验和测试,系统展示了良好的稳定性和高效性,为智慧国防中的目标检测任务提供了重要的技术支持。
算法流程
项目数据
通过搜集关于数据集为各种各样的战斗机目标相关图像,并使用Labelimg标注工具对每张图片进行标注,分43检测类别,分别是’F-16战斗机’, ‘米格-31’, ‘F-35闪电II’, ‘F/A-18大黄蜂’, ‘SR-71黑鸟’, ‘A-10雷电II’, ‘空客A400M’, ‘AG600水陆两栖飞机’, ‘歼-20’, ‘F-4鬼怪战斗机’, ‘C-17环球运输机’, ‘Tornado狂风战斗机’, ‘B-2幽灵战略轰炸机’, ‘V-22鱼鹰’, ‘B-1B枪骑兵轰炸机’, ‘XB-70瓦尔基里’, ‘P-3猎鷹反潜机’, ‘图-160战略轰炸机’, ‘JAS-39鹰狮战斗机’, ‘MQ-9死神无人机’, ‘US2日本海上搜救机’, ‘C-5巨型运输机’, ‘阵风战斗机’, ‘火神式轰炸机’, ‘C-130运输机’, ‘B-52战略轰炸机’, ‘苏-34’, ‘C-2运输机’, ‘F-15战斗机’, ‘苏-57’, ‘F-14战斗机’, ‘F-22猛禽战斗机’, ‘F-117夜鹰战斗机’, ‘RQ-4全球鹰无人机’, ‘U-2侦察机’, ‘幻影2000’, ‘YF-23黑寡妇’, ‘贝尔200’, ‘E-7预警机’, ‘图-95战略轰炸机’, ‘EF2000台风战斗机’, ‘AV-8B垂直/短起降战斗机’, ‘E-2预警机’
。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。
注意:这里的中心点坐标、宽和高都是相对数据!!!
存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。
完成后可进行后续的yolo训练方面的操作。
硬件环境
我们使用的是两种硬件平台配置进行系统调试和训练:
(1)外星人 Alienware M16笔记本电脑:
(2)惠普 HP暗影精灵10 台式机:
上面的硬件环境提供了足够的计算资源,能够支持大规模图像数据的训练和高效计算。GPU 的引入显著缩短了模型训练时间。
使用两种硬件平台进行调试和训练,能够更全面地验证系统的性能、适应性和稳定性。这种方法不仅提升了系统的鲁棒性和泛化能力,还能优化开发成本和效率,为实际应用场景的部署打下良好基础。
模型训练
模型的训练、评估与推理
1.YOLOv8的基本原理
YOLOv8是一个SOTA模型,它建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性,使其成为实现目标检测、图像分割、姿态估计等任务的最佳选择。其具体创新点包括一个新的骨干网络、一个新的Ancher-Free检测头和一个新的损失函数,可在CPU到GPU的多种硬件平台上运行。