基于YOLOv8深度学习的智慧医疗皮肤病理图像自动化诊断系统

随着人工智能技术在医学影像分析中的广泛应用,自动化皮肤病理图像诊断已成为提高诊断效率和准确性的重要手段。本研究提出了一种基于YOLOv8深度学习模型的智慧医疗皮肤病理图像自动化诊断系统,旨在实现皮肤病变的快速、准确诊断。系统能够自动识别和分类皮肤病变,包括但不限于“痣”,“基底细胞癌”,“鳞状细胞癌”,“色素性良性角化病”,“血管性病变”,“光照性角化病”,“皮肤纤维瘤”和“黑色素瘤”等常见皮肤病理类型。

在该系统中,首先通过收集和预处理皮肤病理图像数据集,构建了一个包含多类病变的图像库。然后,基于YOLOv8(You Only Look Once version 8)深度学习模型进行训练,利用卷积神经网络(CNN)进行皮肤病变的检测与分类。为了增强系统的交互性和实用性,我们设计并实现了一个基于PyQt5框架的用户界面,使得医生和研究人员能够通过图形界面上传病理图像、实时查看诊断结果以及获取相关建议。

具体而言,系统经过优化,能够对不同类型的皮肤病变提供准确的定位和分类,具有较高的准确性和实时性。实验结果表明,YOLOv8模型在本任务中的性能优越,具有较高的准确率和召回率,同时PyQt5界面增强了系统的可操作性与用户体验。

本研究为皮肤病理图像的自动化诊断提供了一种新的思路,并为智慧医疗系统的实际应用提供了可行的解决方案,具有广泛的临床应用前景。

项目数据

Tipps:通过搜集关于数据集为各种各样的皮肤病理相关图像,并使用Labelimg标注工具对每张图片进行标注,分8检测类别,是’痣’, ‘基底细胞癌’, ‘鳞状细胞癌’, ‘色素性良性角化病’, ‘血管性病变’, ‘光照性角化病’, ‘皮肤纤维瘤’, ‘黑色素瘤’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。

注意:这里的中心点坐标、宽和高都是相对数据!!!

存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。

完成后可进行后续的yolo训练方面的操作。

硬件环境

我们使用的是两种硬件平台配置进行系统调试和训练:
(1)外星人 Alienware M16笔记本电脑:

(2)惠普 HP暗影精灵10 台式机:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值