随着人工智能技术的飞速发展,深度学习在计算机视觉领域的应用日益广泛,尤其在军事医疗领域,目标检测技术的进步能够大幅提高伤员识别与救援效率。本研究基于YOLOv8(You Only Look Once v8)目标检测模型,提出了一种适用于战场伤员检测的自动化系统。该系统能够实时识别战场环境中的“伤员”和“正常”人员,为快速响应提供技术支持。
本文介绍了用于训练的战场伤员数据集,并对其进行了详细的标注工作。该数据集涵盖了不同场景、不同姿势和多种环境条件下的伤员图像,旨在提高模型的鲁棒性和精确度。其次,基于YOLOv8模型的训练代码进行模型训练与优化,采用迁移学习技术提高模型的准确度和训练效率。最后,结合PyQt5开发了图形用户界面(GUI),实现用户交互与实时伤员检测功能,用户可通过界面上传图像或视频,系统自动检测并分类“伤员”和“正常”目标。
实验结果表明,基于YOLOv8的目标检测模型在战场伤员检测任务中展现了优异的性能,尤其在检测精度和实时性方面,成功满足了战场应用的高要求。通过该系统,能够显著提高伤员识别的效率和准确性,为战场医疗救援提供决策支持。本文的研究成果可为未来智能化战场医疗系统的开发与应用奠定基础。
算法流程
Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。
项目数据
Tipps:通过搜集关于数据集为各种各样的战场伤员相关图像,并使用Labelimg标注工具对每张图片进行标注,分2检测类别,是’受伤士兵’,’正常士兵’’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。
注意:这里的中心点坐标、宽和高都是相对数据!!!
存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类