在日常学习生活中,许多有价值的资料都是非中文的,例如 Andrej Karpathy 推出的几个与大模型相关的视频,例如经久不衰的 MIT 6.824 分布式系统课程,这些视频系统地讲解了特定领域的知识,时长较长,往往从一小时起步。如果逐句翻译,将耗费大量时间。然而,随着大型模型技术的快速发展,我们可以利用这些技术来翻译和学习这些视频,使我们的学习之路更加顺畅。本文将介绍如何使用 Whisper、Ollama 和 FFmpeg 组建一套完善的非中文视频翻译流程。
whipser 是由 OpenAI 开源的一个基于大规模弱监督实现的语音识别工具,它支持识别超过一百种语言。
此外,Whisper 还可以翻译识别到的语言,但它仅支持将结果翻译为英文,无法满足我们对中文的需求。因此,我们需要借助 Ollama 对语音识别的结果进行进一步处理。
ollama 可以快速部署并运行大模型服务,支持几乎所有的主流大模型,让开发者可以像管理容器和镜像一样管理大模型,通过使用 ollama 部署智脑,Qwen 等大语言模型,我们可以将 Whisper 识别的字幕翻译为中文。
最后,我们使用 FFmpeg 这一视频处理软件,将字幕与原视频合并,实现流畅的观看体验。
1
具体步骤
1. 使用 whipser 提取字幕
whisper 的安装和使用都很简单,首先执行下面的命令安装
pip install -U openai-whisper
安装后,运行下面的命令即可从视频中提取 srt 格式的字幕
whisper video.mp4 --model turbo --language en --output_format srt
详细解释下每个参数的作用:
video.mp4 即需要处理的视频
--model 参数指定使用什么模型,whisper 目前支持六种模型&#x