论文笔记 —— 《Deep Transfer Learning with Joint Adaptation Networks》

本文探讨了《DeepTransferLearningwithJointAdaptationNetworks》论文,介绍了一种基于联合分布差异(JDD)的深度迁移学习方法。该方法通过最小化源域与目标域的联合分布差异,并结合交叉熵损失函数进行训练,以实现特征和分布的迁移。在目标域中,使用CNN分类器的预测值作为伪标签来表示其联合分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文笔记 —— 《Deep Transfer Learning with Joint Adaptation Networks》

摘要

  1. 适用范围:更一般化,特征、分布都变,Hilbert空间
  2. JDD用来衡量联合分布的差异,用BP训练
  3. 损失函数是交叉熵函数+JDD正则项【有点类似第一篇论文MMD的表达形式,基于分布差异的迁移方法的损失函数表达形式基本都是这样】
  4. 对源域带标签数据进行微调,让源域和目标域的联合分布变得相似
  5. 表示目标域联合分布时需要用到标签,本文使是使用CNN分类器的预测值作为伪标签。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值