使用自已预训练好的模型作为网络的初始化参数

本文介绍了如何在PyTorch中使用预训练模型的权重进行模型初始化,包括保存预训练模型权重、加载到新模型并处理部分或完全相同的架构,以及注意事项,如模型架构匹配和微调策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用自己预训练好的模型作为网络的初始化参数是深度学习中常见的做法,尤其是在迁移学习场景中。这可以通过加载预训练模型的权重到新模型中来实现,前提是新模型的架构能够与预训练模型的权重相匹配。以下是一般步骤和示例代码,展示如何在PyTorch中实现这一过程。

步骤1:保存预训练模型的权重

假设你已经训练了一个模型,并且想要保存它的权重,可以使用以下代码:

torch.save(model.state_dict(), 'model_weights.pth')

这里,model是你的预训练模型,model_weights.pth是保存模型权重的文件。

步骤2:加载权重到新模型

当你有了预训练模型的权重后,可以将这些权重加载到新的模型中,前提是新模型的架构必须与预训练模型兼容。如果新模型与预训练模型完全相同,可以直接加载权重。如果只是部分相同,你可能需要在加载权重之前进行一些调整。

完全相同的模型架构
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值