寻找真的拉普拉斯高斯算子LOG(证明lindeberg的LOG和DOG,一)

教材上说二维高斯平滑函数如下:

h(x,y)=-exp(-0.5*(x^{2}+y^{2})/sigma^{2}

x^{2}+y^{2}=r^{2},则h(r)=-exp(-0.5*(r^{2})/sigma^{2}

上式对r求导数,=(-0.5/sigma^{2})*-exp(-0.5*(r^{2})/sigma^{2})*{(r^{2})}'

=r/sigma^{2}*exp(-0.5*(r^{2})/sigma^{2}

那么r的二阶导数=1/sigma^{2}*【{r}'*exp(-0.5*(r^{2})/sigma^{2})+r*exp(-0.5*(r^{2})/sigma^{2})*(-0.5/sigma^{2})*{(r^{2})}'

=1/sigma^{2}*【1-r^{2}/sigma^{2}】exp(-0.5*(r^{2})/sigma^{2}

=-(r^{2}/sigma^{2}*1/sigma^{2}-1/sigma^{2})*exp(-0.5*(r^{2})/sigma^{2}

教材上说,用最后这个公式来求拉普拉斯的值,如图a

我又求了h(r)=exp(-0.5*(r^{2})/sigma^{2})去掉负号的r的二阶导数如图b

=(r^{2}/sigma^{2}*1/sigma^{2}-1/sigma^{2})*exp(-0.5*(r^{2})/sigma^{2})(答案少了一个负号)

最后我发现这不是LOG,因为用过拉普拉斯的人都知道:

lapulas=\frac{\partial^2 F}{\partial x^2}+\frac{\partial^2 F}{\partial y^2}=DOG

好,我们先求\frac{\partial^2 F}{\partial x^2},分两步,

第一,求一阶导数,=exp(-0.5*(x^{2}+y^{2})/sigma^{2})*{(x^{2}+y^{2})}'*(-0.5)/sigma^{2}

=exp(-0.5*(x^{2}+y^{2})/sigma^{2})*2*x*(-0.5)/sigma^{2}

=-exp(-0.5*(x^{2}+y^{2})/sigma^{2})*x/sigma^{2}

第二,在上式基础上,求x二阶导数

=-1/sigma^{2}*【exp(-0.5*(x^{2}+y^{2})/sigma^{2})*{x}'+exp(-0.5*(x^{2}+y^{2})/sigma^{2})*(-0.5/sigma^{2})*{(x^{2}+y^{2})}'*x】

=-1/sigma^{2}*exp(-0.5*(x^{2}+y^{2})/sigma^{2})【1-x^{2}/sigma^{2}

=exp(-0.5*(x^{2}+y^{2})/sigma^{2})(x^{2}/sigma^{2}*1/sigma^{2}-1/sigma^{2}

同理,\frac{\partial^2 F}{\partial y^2}=-1/sigma^{2}*exp(-0.5*(x^{2}+y^{2})/sigma^{2})【1-y^{2}/sigma^{2}

=exp(-0.5*(x^{2}+y^{2})/sigma^{2})(y^{2}/sigma^{2}*1/sigma^{2}-1/sigma^{2}

所以lapulas=\frac{\partial^2 F}{\partial x^2}+\frac{\partial^2 F}{\partial y^2}

=exp(-0.5*(x^{2}+y^{2})/sigma^{2})*【x^{2}/sigma^{2}*1/sigma^{2}-1/sigma^{2}+y^{2}/sigma^{2}*1/sigma^{2}-1/sigma^{2}

=exp(-0.5*(x^{2}+y^{2})/sigma^{2})*【(x^{2}+y^{2})/sigma^{2}*1/sigma^{2}-2/sigma^{2}

好,令x^{2}+y^{2}=r^{2},则

=(r^{2}/sigma^{2}*1/sigma^{2}-2/sigma^{2})*exp(-0.5*r^{2}/sigma^{2})【这才是真正的LOG函数

这是最终答案,对比上面的-LOG,图b

r^{2}/sigma^{2}*1/sigma^{2}-1/sigma^{2})*exp(-0.5*(r^{2})/sigma^{2}

看到没有,系数不同,也就是说,少了一个-1/sigma^{2}*exp(-0.5*(r^{2})/sigma^{2}

这个是粗略估计,有兴趣的可以编程测试一下,立马见分晓!还是计算机好啊!我们前面有求高斯模板的程序,改动一下,就ok了!

另外,他们说LOG和DOG(差分高斯函数)关系,一直不知怎么验证,可以用计算机强大的计算力啊!不是吗?(骑驴找驴,这个驴真好用!)

sigma^{2}*DOG*(k-1)=G(x,y,k*sigma)-G(x,y,sigma)

AI(哎,我哩个去)!支持向量机都程序化了,SIFT还没程序化,可见SIFT算法的复杂度,人们都说他很牛X!的确很牛叉,复杂度很高,显然效率很低,理论横扫千军,应用自己斟酌!(AI(哎哎,我哩个去)!我到底要不要程序化实现它?艰难的选择!试试看吧!)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值