混淆矩阵以及相关指标

1.混淆矩阵

混淆矩阵是用来总结一个分类器结果的矩阵。对于k元分类,其实它就是一个k x k的表格,用来记录分类器的预测结果。

例子:

假设某医院需要对10位(编号1到10)密接者进行核酸检验,检验结果如下:

12345678910
阳性阴性阴性阴性阴性阳性阳性阴性阴性阴性

而真实的结果是:

12345678910
阳性阴性阴性阳性阴性阴性阳性阳性阴性阴性

可以看到4号和8号密接者是阳性而检测错误成了阴性,而6号是阴性而检测错误成了阴性,而其余的检测结果都是正确的。

那么我们做如下定义:

  • 正确检测出阳性的数量定义为\small TP (True\;positive)
  • 正确检测出阴性的数量定义为\small TN (True\;negative)
  • 错误检测为阳性的数量定义为\small FP(False\;positive)
  • 错误检测为阴性的数量定义为\small FN(False\;negative)

在本例中

  • 正确检测出阳性的密接者是1号和7号,所以 \small TP = 2
  • 正确检测出阴性的密接者是 2号 、3号 、5号 、9号、10号,所以\small TN = 5
  • 错误检测为阳性的密接者是6号,所以 \small FP = 1
  • 错误检测为阳性的密接者是4号和8号,所以 \small FN = 2

我们可以把上述 TP TN FP FN列成如下矩阵

TP\;2TN\;5
FP\;1FN\;2

而混淆矩阵就是由上述 TP TN FP FN 组成的矩阵

2. 准确率 精确率 召回率

混淆矩阵只计算了个数,我们可以通过计算准确率等指标得到更加直观的结果。

  • 准确率(Accuracy)
    Accuracy = \frac{TP+TN}{TP+TN+FP+FN}
    准确率用于判断正确的结果占观测值的比重
    在上述案例中 \small Accuracy = \frac{5+2}{10} = 70%
  • 精确率 (Precision)
    Precision = \frac{TP}{TP+FP}
    精确率用于判断在预测值是positive的结果中预测正确的比重
    上述案例中\small Precision = \frac{2}{1+2} = \frac{2}{3}
  • 召回率(Recall)
    Recall = \frac{TP}{TP+FN}
    召回率用于判断在真实值是positive的结果中预测正确的比重
    上述案例中\small Recall = \frac{2}{1+2} = \frac{2}{3}

 

3. F1分数

在做分类问题时,精确率和召回率通常时此消彼长的,而F1分数兼顾了精确率和召回率,所以是常见的判断指标。

F1 = \frac{2 * precistion * recall}{precistion+recall}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值