1.混淆矩阵及常用评价指标介绍
本文混淆矩阵中,1表示少数类(正类),0表示多数类(负类),第一个数表示真实值,第二个数表示预测值。(比如10表示本来是正类,被预测为了负类)
| 预测值 | |||
| 1 | 0 | ||
| 真实值 | 1 | 11 | 10 |
| 0 | 01 | 00 | |
常用评价指标:
a c c = 11 + 00 11 + 10 + 01 + 00 acc=\frac{11+00}{11+10+01+00} acc=11+10+01+0011+00
p = 11 11 + 01 p=\frac{11}{11+01} p=11+0111
r = 11 11 + 10 r = \frac{11}{11+10} r=11+1011
s = 00 01 + 00 s=\frac{00}{01+00} s=01+0000
F P

本文详细介绍了混淆矩阵及其在评估模型性能时常用的准确率、精确度、召回率和假正率等指标。通过实例分析了如何手动和自动绘制ROC曲线,并讨论了在样本不均衡情况下的处理方法。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



