一、项目实现介绍
项目背景
随着汽车行业对性能、舒适性和安全性的不断要求,刹车系统作为关键部件之一,其设计和优化对于提高车辆安全性和驾驶体验至关重要。刹车片在工作过程中会承受高温、高压力和摩擦力的作用,这会导致刹车片的温度变化、材料性能退化,甚至刹车失效。因此, 热力耦合分析 (Thermo-mechanical Coupling Analysis)在刹车片设计中的重要性日益增加。有限元分析(FEA)技术被广泛应用于汽车刹车片的热力耦合分析中,能够模拟和分析刹车片在各种工况下的热分布和应力情况,从而为优化设计提供科学依据。
然而,传统的有限元仿真模型往往需要大量的计算资源和长时间的计算过程,这在某些情况下可能导致高昂的时间和成本投入。为了弥补这一缺陷,深度学习技术被引入到有限元分析的辅助优化中,通过数据驱动的模型来预测复杂的仿真结果,进一步提高效率并降低成本。