1.3 加载路径对桁架的影响

个人专栏—塑性力学

1.1 塑性力学基本概念 塑性力学基本概念
1.2 弹塑性材料的三杆桁架分析 弹塑性材料的三杆桁架分析
1.3 加载路径对桁架的影响 加载路径对桁架的影响
2.1 塑性力学——应力分析基本概念 应力分析基本概念
2.2 塑性力学——主应力、主方向、不变量 主应力、主方向、不变量



加载路径: \color{green}加载路径: 加载路径: 材料在受力时所经历的应力和应变变化路径。在塑性力学中,加载路径对材料的变形行为和力学性能有着重要影响。
案例分析 \color{green}案例分析 案例分析

如图所示,理想弹塑性材料的三杆桁架受竖向力 P P P 和水平力 Q Q Q的作用

由弹塑性力学分析可知:

平衡方程 { σ 2 + 2 ( σ 1 + σ 3 ) 2 = P A 0 2 ( σ 1 − σ 3 ) 2 = Q A 0 几何方程 { ε 1 = δ x 2 l 0 + δ y 2 l 0 ε 2 = δ y l 0 ε 3 = δ y 2 l 0 − δ x 2 l 0 ε 2 = ε 1 + ε 3 理想弹塑性模型应力应变关系: σ = { E ε ( ε ≤ ε s ) σ s ( ε ≥ ε s ) \begin{gather*} \text{平衡方程}\quad \begin{cases} \sigma_2+\frac{\sqrt{2}(\sigma_1+\sigma_3)}{2}=\frac{P}{A_0}\\ \frac{\sqrt{2}(\sigma_1-\sigma_3)}{2}=\frac{Q}{A_0} \end{cases}\\ \text{几何方程}\quad \begin{cases} \varepsilon_1=\frac{\delta_x}{2l_0}+\frac{\delta_y}{2l_0}\\ \varepsilon_2=\frac{\delta_y}{l_0}\\ \varepsilon_3=\frac{\delta_y}{2l_0}-\frac{\delta_x}{2l_0}\\ \varepsilon_2=\varepsilon_1+\varepsilon_3 \end{cases}\\ \text{理想弹塑性模型应力应变关系:} \\ \sigma=\begin{cases} E\varepsilon & (\varepsilon\leq \varepsilon_s)\\ \sigma_s & (\varepsilon\geq \varepsilon_s) \end{cases} \end{gather*} 平衡方程{σ2+22 (σ1+σ3)=A0P22 (σ1σ3)=A0Q几何方程 ε1=2l0δx+2l0δyε2=l0δyε3=2l0δy2l0δxε2=ε1+ε3理想弹塑性模型应力应变关系:σ={σs(εεs)(εεs)

加载路径 1 \color{green}加载路径1 加载路径1

加载路径1

如图 $OA $所示,保持 $Q=0 $,加载 $P\rightarrow P_s(\sigma_sA_0(1+\sqrt{2})) $

可知杆内应力和节点位移 { σ 1 = σ 2 = σ 3 = σ s δ y = 2 δ e = δ s = 2 σ s l 0 E δ x = 0 保持竖直位移  δ y 不变,增加  Q → Q s ,由几何方程得 { Δ δ y = 0 , Δ δ x = δ x ≥ 0 Δ ε 2 = 0 Δ ε 1 = − Δ ε 3 = Δ δ x 2 l 0 ≥ 0 由应变增量可知,当1杆继续伸长,2杆不变,3杆卸载 { Δ σ 1 = Δ σ 2 = 0 Δ σ 3 = E Δ ε 3 = − E δ x / 2 l 0 ≤ 0 由增量形式平衡方程可知 { Δ σ 2 + 2 ( Δ σ 1 + Δ σ 3 ) 2 = Δ P A 0 2 ( Δ σ 1 − Δ σ 3 ) 2 = Δ Q A 0 → { Δ P A 0 = Δ σ 3 2 ≤ 0 Δ Q A 0 = − Δ σ 3 2 ≥ 0 → Δ P = − Δ Q \begin{gather*} \text{可知杆内应力和节点位移}\\ \begin{cases} \sigma_1=\sigma_2=\sigma_3=\sigma_s \\ \delta_y=2\delta_e=\delta_s=\frac{2\sigma_sl_0}{E}\\ \delta_x=0 \end{cases}\\ \text{保持竖直位移 $\delta_y $不变,增加 $Q\rightarrow Q_s $,由几何方程得}\\ \begin{cases} \Delta\delta_y=0, \quad \Delta\delta_x=\delta_x\ge 0\\ \Delta\varepsilon_2=0\\ \Delta\varepsilon_1=-\Delta\varepsilon_3=\frac{\Delta\delta_x}{2l_0}\ge 0 \end{cases}\\ \text{由应变增量可知,当1杆继续伸长,2杆不变,3杆卸载}\\ \begin{cases} \Delta\sigma_1=\Delta\sigma_2=0\\ \Delta\sigma_3=E\Delta\varepsilon_3=-E\delta_x/2l_0\le 0 \end{cases}\\ \text{由增量形式平衡方程可知}\\ \begin{cases} \Delta \sigma_2+\frac{\sqrt{2}(\Delta\sigma_1+\Delta\sigma_3)}{2}=\frac{\Delta P}{A_0}\\ \frac{\sqrt{2}(\Delta\sigma_1-\Delta\sigma_3)}{2}=\frac{\Delta Q}{A_0} \end{cases}\\ \rightarrow \begin{cases} \frac{\Delta P}{A_0}=\frac{\Delta \sigma_3}{\sqrt{2}}\le 0\\ \frac{\Delta Q}{A_0}=-\frac{\Delta \sigma_3}{\sqrt{2}}\ge 0 \end{cases} \rightarrow \Delta P=-\Delta Q \end{gather*} 可知杆内应力和节点位移 σ1=σ2=σ3=σsδy=2δe=δs=E2σsl0δx=0保持竖直位移 δy不变,增加 QQs,由几何方程得 Δδy=0,Δδx=δx0Δε2=0Δε1=Δε3=2l0Δδx0由应变增量可知,当1杆继续伸长,2杆不变,3杆卸载{Δσ1=Δσ2=0Δσ3=EΔε3=Eδx/2l00由增量形式平衡方程可知{Δσ2+22 (Δσ1+Δσ3)=A0ΔP22 (Δσ1Δσ3)=A0ΔQ{A0ΔP=2 Δσ30A0ΔQ=2 Δσ30ΔP=ΔQ

为保持 $\delta_y $不变, $Q $增加时 $P $必须减小,如图 $AB $段所示。

当 $\Delta \sigma_3=-2\sigma_s, \sigma_3=-\sigma_s $,3杆进入反向屈服,整个桁架进入塑性流动状态,此时 $Q $不再增加

{ Q = Q s = Δ Q = 2 σ s A 0 P = Δ P + P s = − 2 σ s A 0 + σ s A 0 ( 1 + 2 ) = σ s A 0 桁架应力 σ 1 = σ 2 = σ s , σ 3 = − σ s 结合 Δ σ 3 = − 2 σ s 可得节点位移: δ y = δ s , δ x = Δ δ x = 4 σ s l 0 E = 2 δ s 由几何方程可求得应变: ε 1 = 3 ε s , ε 2 = 2 ε s , ε 3 = − ε s \begin{gather*} \begin{cases} Q=Q_s=\Delta Q=\sqrt{2}\sigma_sA_0\\ P=\Delta P+P_s=-\sqrt{2}\sigma_sA_0+\sigma_sA_0(1+\sqrt{2})=\sigma_sA_0 \end{cases}\\ \text{桁架应力}\quad \sigma_1=\sigma_2=\sigma_s, \quad \sigma_3=-\sigma_s\\ \text{结合}\Delta \sigma_3=-2\sigma_s\text{可得节点位移:}\\ \delta_y=\delta_s,\quad \delta_x=\Delta\delta_x=\frac{4\sigma_sl_0}{E}=2\delta_s\\ \text{由几何方程可求得应变:}\\ \varepsilon_1=3\varepsilon_s,\varepsilon_2=2\varepsilon_s,\varepsilon_3=-\varepsilon_s \end{gather*} {Q=Qs=ΔQ=2 σsA0P=ΔP+Ps=2 σsA0+σsA0(1+2 )=σsA0桁架应力σ1=σ2=σs,σ3=σs结合Δσ3=2σs可得节点位移:δy=δs,δx=Δδx=E4σsl0=2δs由几何方程可求得应变:ε1=3εs,ε2=2εs,ε3=εs

加载路径 2 \color{green}加载路径2 加载路径2

加载路径2

比例加载 $P:Q=1:\sqrt{2} $,直到桁架达到塑性极限状态,即 $P=\sigma_sA_0,Q=\sqrt{2}\sigma_sA_0 $,如图中路径 $OB $段所示。

弹性阶段由几何方程和平衡方程可知

ε 2 = ε 1 + ε 3 σ 2 = σ 1 + σ 3 将  Q = 2 P 代入平衡方程可得3个杆的应力 { σ 1 = P 2 A 0 ( 2 1 + 2 + 2 ) ≥ 0 σ 2 = P A 0 2 1 + 2 ≥ 0 σ 3 = P 2 A 0 ( 2 1 + 2 − 2 ) ≤ 0 \begin{gather*} \varepsilon_2=\varepsilon_1+\varepsilon_3\\ \sigma_2=\sigma_1+\sigma_3\\ \text{将 $Q=\sqrt{2}P $代入平衡方程可得3个杆的应力}\\ \begin{cases} \sigma_1=\frac{P}{2A_0}(\frac{\sqrt{2}}{1+\sqrt{2}}+2)\ge 0\\ \sigma_2=\frac{P}{A_0}\frac{\sqrt{2}}{1+\sqrt{2}}\ge 0\\ \sigma_3=\frac{P}{2A_0}(\frac{\sqrt{2}}{1+\sqrt{2}}-2)\le 0 \end{cases} \end{gather*} ε2=ε1+ε3σ2=σ1+σ3 Q=2 P代入平衡方程可得3个杆的应力 σ1=2A0P(1+2 2 +2)0σ2=A0P1+2 2 0σ3=2A0P(1+2 2 2)0

三者中 $\sigma_1 $最大,当 $\sigma_1=\sigma_s $时,桁架达到弹性极限状态

{ P e = σ s A 0 2 ( 1 + 2 ) 2 + 3 2 σ 1 e = σ s , ε 1 e = σ 1 e E = ε s σ 2 e = 2 2 2 + 3 2 σ s , ε 2 e = σ 2 e E σ 3 e = − 2 + 2 2 2 + 3 2 σ s , ε 3 e = σ 3 e E { δ x e = 2 + 2 2 2 + 3 2 δ e δ y e = 2 2 2 + 3 2 δ e 继续加载,1杆屈服 Δ σ 1 = 0 , Δ Q = 2 Δ P 由增量式平衡方程可知 { Δ σ 2 + 2 ( Δ σ 1 + Δ σ 3 ) 2 = Δ P A 0 2 ( Δ σ 1 − Δ σ 3 ) 2 = Δ Q A 0 → { Δ σ 3 = − 2 Δ P A 0 ≤ 0 Δ σ 2 = ( 1 + 2 ) Δ P A 0 ≥ 0 σ 1 = σ s , σ 2 = σ 2 e + Δ σ 2 , σ 3 = σ 3 e + Δ σ 3 当  σ 2 = σ s 时, Δ σ 2 = σ s − σ 2 e Δ P = σ s A 0 2 2 + 3 2 → Δ σ 3 = − 2 2 σ s 2 + 3 2 σ 3 = σ 3 e + δ σ 3 = − σ s 即桁架进入塑性状态 极限荷载为 P = P e + Δ P = σ s A 0 Q = 2 σ s A 0 = Q s → 极限荷载不因加载路径的不同而改变 Δ ε 2 = Δ σ 2 E = ( 1 + 2 ) Δ P A 0 E , Δ ε 3 = Δ σ 3 E = − 2 Δ P A 0 E Δ δ x = ( Δ ε 2 − 2 Δ ε 3 ) l 0 , Δ δ y = Δ ε 2 l 0 → δ x = 3 δ e , δ y = δ e , ε 1 = 2 ε s , ε 2 = − ε 3 = ε s \begin{gather*} \begin{cases} P_e=\sigma_sA_0\frac{2(1+\sqrt{2})}{2+3\sqrt{2}}\\ \sigma_1^e =\sigma_s,\quad \varepsilon_1^e=\frac{\sigma_1^e}{E}=\varepsilon_s\\ \sigma_2^e=\frac{2\sqrt{2}}{2+3\sqrt{2}}\sigma_s,\quad \varepsilon_2^e=\frac{\sigma_2^e}{E}\\ \sigma_3^e=-\frac{2+2\sqrt{2}}{2+3\sqrt{2}}\sigma_s,\quad \varepsilon_3^e=\frac{\sigma_3^e}{E} \end{cases}\quad \begin{cases} \delta_x^e=\frac{2+2\sqrt{2}}{2+3\sqrt{2}}\delta_e\\ \delta_y^e=\frac{2\sqrt{2}}{2+3\sqrt{2}}\delta_e \end{cases}\\ \text{继续加载,1杆屈服}\quad \Delta\sigma_1=0,\Delta Q=\sqrt{2}\Delta P\\ \text{由增量式平衡方程可知}\\ \begin{cases} \Delta \sigma_2+\frac{\sqrt{2}(\Delta\sigma_1+\Delta\sigma_3)}{2}=\frac{\Delta P}{A_0}\\ \frac{\sqrt{2}(\Delta\sigma_1-\Delta\sigma_3)}{2}=\frac{\Delta Q}{A_0} \end{cases}\rightarrow \begin{cases} \Delta \sigma_3=-\frac{2\Delta P}{A_0}\le 0\\ \Delta \sigma_2=\frac{(1+\sqrt{2})\Delta P}{A_0} \ge 0 \end{cases}\\ \sigma_1=\sigma_s,\quad \sigma_2=\sigma_2^e+\Delta\sigma_2, \quad \sigma_3=\sigma_3^e+\Delta\sigma_3\\ \text{当 $\sigma_2=\sigma_s $时,}\quad \Delta\sigma_2=\sigma_s-\sigma^e_2\\ \Delta P=\sigma_sA_0\frac{\sqrt{2}}{2+3\sqrt{2}}\rightarrow \Delta\sigma_3=-\frac{2\sqrt{2}\sigma_s}{2+3\sqrt{2}}\\ \sigma_3=\sigma_3^e+\delta\sigma_3=-\sigma_s \quad \text{即桁架进入塑性状态}\\ \text{极限荷载为}\quad P=P_e+\Delta P=\sigma_sA_0 \quad Q=\sqrt{2}\sigma_sA_0=Q_s\\ \rightarrow \text{极限荷载不因加载路径的不同而改变}\\ \Delta \varepsilon_2=\frac{\Delta \sigma_2}{E}=(1+\sqrt{2})\frac{\Delta P}{A_0E},\quad \Delta \varepsilon_3=\frac{\Delta \sigma_3}{E}=-\frac{2\Delta P}{A_0E}\\ \Delta \delta_x=(\Delta\varepsilon_2-2\Delta \varepsilon_3)l_0,\quad \Delta\delta_y=\Delta\varepsilon_2l_0\\ \rightarrow \delta_x=3\delta_e,\quad \delta_y=\delta_e,\quad \varepsilon_1=2\varepsilon_s,\quad \varepsilon_2=-\varepsilon_3=\varepsilon_s \end{gather*} Pe=σsA02+32 2(1+2 )σ1e=σs,ε1e=Eσ1e=εsσ2e=2+32 22 σs,ε2e=Eσ2eσ3e=2+32 2+22 σs,ε3e=Eσ3e{δxe=2+32 2+22 δeδye=2+32 22 δe继续加载,1杆屈服Δσ1=0,ΔQ=2 ΔP由增量式平衡方程可知{Δσ2+22 (Δσ1+Δσ3)=A0ΔP22 (Δσ1Δσ3)=A0ΔQ{Δσ3=A0P0Δσ2=A0(1+2 )ΔP0σ1=σs,σ2=σ2e+Δσ2,σ3=σ3e+Δσ3 σ2=σs时,Δσ2=σsσ2eΔP=σsA02+32 2 Δσ3=2+32 22 σsσ3=σ3e+δσ3=σs即桁架进入塑性状态极限荷载为P=Pe+ΔP=σsA0Q=2 σsA0=Qs极限荷载不因加载路径的不同而改变Δε2=EΔσ2=(1+2 )A0EΔP,Δε3=EΔσ3=A0EPΔδx=(Δε2ε3)l0,Δδy=Δε2l0δx=3δe,δy=δe,ε1=2εs,ε2=ε3=εs

比较两种不同加载路径达到统一塑性极限载荷时,所得杆件中应力相同,但应变和位移不同。对于更复杂的静不定结构,更复杂的加载路径,结构内的应力分布也可能不同。
塑性问题不同于弹性问题的一个重要特点是: 当物体和结构发生塑性变形时,其应力、应变和位移依赖于外载的终值和加载历史。

如果你喜欢以上内容,或者对此感兴趣,欢迎一键三连,博主将持续更新,如果有任何问题,可以咨询博主,非常乐意为大家解答。

  • 17
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
四杆桁架是一种结构框架,由四根杆件和若干固定节点组成。在MATLAB中,可以利用有限元分析方法对四杆桁架进行静力学分析。 首先,需要定义桁架的几何特征,包括杆件长度、夹角和节点位置。可以利用MATLAB中的数组来存储这些参数。 然后,可以根据桁架的几何特征建立刚度矩阵。刚度矩阵描述了杆件之间的刚度关系,即受力或变形时的相互作用。刚度矩阵的建立可以使用桁架元素的刚度关系和节点的连接关系来确定。 接下来,可以对桁架进行加载条件和边界条件的定义。加载条件可以包括外力和力矩,可以通过对节点施加力或弯矩来模拟实际情况。边界条件则可以用于约束桁架在空间中的运动,例如限制某些节点只能沿特定方向移动或旋转。 将加载条件和边界条件应用到刚度矩阵上,可以得到系统的等效力和位移。利用MATLAB的线性方程求解函数,可以求解系统的位移向量,得到每个节点的位移值。 最后,可以根据位移值计算节点上的内力和应力。内力可以通过刚度关系和位移值来计算,而应力可以通过节点上的内力和截面面积来计算。 综上所述,四杆桁架的MATLAB分析包括定义几何特征、建立刚度矩阵、定义加载和边界条件、求解位移、计算内力和应力。通过这样的分析,可以得到桁架结构在受力情况下的应变和变形情况,为优化设计和结构安全提供参考。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科研拓展人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值