2.4 塑性力学—洛德(Lode)参数

个人专栏—塑性力学

1.1 塑性力学基本概念 塑性力学基本概念
1.2 弹塑性材料的三杆桁架分析 弹塑性材料的三杆桁架分析
1.3 加载路径对桁架的影响 加载路径对桁架的影响
2.1 塑性力学——应力分析基本概念 应力分析基本概念
2.2 塑性力学——主应力、主方向、不变量 主应力、主方向、不变量


L o d e 参数简介 \color{blue}Lode参数简介 Lode参数简介

  • Lode参数是一种用于描述材料在多轴状态下的塑性行为的参数,可以准确描述材料的塑性变形特性。

  • Lode参数不能表示一点的应力状态,因为它不表示应力球张量

  • Lode参数$\mu_{\sigma} $ 反映受力状态的形式,即主应力之间的比例关系。

  • Lode参数的理论推导

σ − τ \sigma-\tau στ平面上以 P 1 ( σ 1 , 0 ) , P 2 ( σ 2 , 0 ) , P 3 ( σ 3 , 0 ) P_1(\sigma_1,0),P_2(\sigma_2,0),P_3(\sigma_3,0) P1(σ1,0),P2(σ2,0),P3(σ3,0)三点中任意两点为直径作出三个摩尔圆

应力摩尔圆

根据摩尔圆可得
1 2 P 1 P 3 = 1 2 ( σ 1 − σ 3 ) = τ 1 1 2 P 1 P 2 = 1 2 ( σ 1 − σ 2 ) = τ 2 2 3 P 1 P 3 = 1 2 ( σ 2 − σ 3 ) = τ 3 \begin{gather*} \frac{1}{2}P_1P_3=\frac{1}{2}(\sigma_1-\sigma_3)=\tau_1\\ \frac{1}{2}P_1P_2=\frac{1}{2}(\sigma_1-\sigma_2)=\tau_2\\ \frac{2}{3}P_1P_3=\frac{1}{2}(\sigma_2-\sigma_3)=\tau_3 \end{gather*} 21P1P3=21(σ1σ3)=τ121P1P2=21(σ1σ2)=τ232P1P3=21(σ2σ3)=τ3
为考察中间应力 σ 2 \sigma_2 σ2对屈服的影响,可用 M P 2 MP_2 MP2 M P 1 MP_1 MP1之比确定 P 2 P_2 P2 P 1 P_1 P1 P 3 P_3 P3之间的相对位置
μ σ = M P 2 M P 1 = P 2 P 3 − M P 3 M P 1 = 2 σ 2 − σ 3 σ 1 − σ 3 − 1 \begin{align*} \mu_{\sigma}&=\frac{MP_2}{MP_1}\\ &=\frac{P_2P_3-MP_3}{MP_1}=2\frac{\sigma_2-\sigma_3}{\sigma_1-\sigma_3}-1 \end{align*} μσ=MP1MP2=MP1P2P3MP3=2σ1σ3σ2σ31

  • 设主次序为 $\sigma_1\geq \sigma_2 \geq \sigma_3 $

    • 单轴拉伸: $\sigma_1>0,\sigma_2=\sigma_3=0,\mu_{\sigma}=-1 $

    • 纯剪切:$\sigma_1=-\sigma_3>0,\sigma_2=0,\mu_{\sigma}=0 $

    • 单向压缩:$\sigma_1=\sigma_2=0,\sigma_3<0,\mu_{\sigma}=-1 $

  • 偏张量三个不变量的比值:
    S 1 : S 2 : S 3 = − 3 + μ σ : − 2 μ σ : 3 + μ σ S_1:S_2:S_3=-3+\mu_{\sigma}:-2\mu_{\sigma}:3+\mu_{\sigma} S1:S2:S3=3+μσ:2μσ:3+μσ

  • 如图,将坐标原点 $O $移到新的位置 $O^{'} $,则

O O ′ = σ 1 + σ 2 + σ 3 3 = σ m O ′ P 1 = σ 1 − σ m = S 1 O ′ P 2 = σ 2 − σ m = S 2 O ′ P 3 = σ 3 − σ m = S 3 \begin{align*} OO^{'}&=\frac{\sigma_1+\sigma_2+\sigma_3}{3}=\sigma_m\\ O^{'}P_1&=\sigma_1-\sigma_m=S_1\\ O^{'}P_2&=\sigma_2-\sigma_m=S_2\\ O^{'}P_3&=\sigma_3-\sigma_m=S_3 \end{align*} OOOP1OP2OP3=3σ1+σ2+σ3=σm=σ1σm=S1=σ2σm=S2=σ3σm=S3

  • 由此所得轴平移后应力圆即是描述应力偏量的应力圆。

  • 原点任意平移一个距离,相当于在原有应力状态下叠加一个静水压力,这个叠加不影响屈服函数和塑性变形。

  • 可见 $\mu_{\sigma} $是描述应力偏量的特征值,它与应力偏量不变量 $J_2,J_3 $有关,而与应力球张量无关。

应力空间 \color{blue}应力空间 应力空间

如图所示

  • L直线:主应力空间中过原点并与坐标轴成等角的直线
    l 1 = l 2 = l 3 = 3 3 σ 1 = σ 2 = σ 3 l_1=l_2=l_3=\frac{\sqrt{3}}{3}\quad \sigma_1=\sigma_2=\sigma_3 l1=l2=l3=33 σ1=σ2=σ3
    L直线上的点代表应力球张量点的状态,偏张量为0,不产生塑性变形。

  • π \pi π平面:通过主应力空间原点,与L直线垂直的平面,其控制方程为:

σ 1 + σ 2 + σ 3 = 0 \sigma_1+\sigma_2+\sigma_3=0 σ1+σ2+σ3=0
$\pi $平面上点的平均应力为0,该平面上的点只有应力偏张量,不引起体积变形。

  • O P ⃗ = O S ⃗ + O N ⃗ \vec{OP}=\vec{OS}+\vec{ON} OP =OS +ON $ON $沿L直线, $OS $在 $\pi $平面

  • 以三个相互垂直的单位向量 $i_1,i_2,i_3 $作为主应力空间中的基向量,构建与 $\pi $平面重合的斜面,基向量 $(i_1,i_2,i_3) $在 斜平面上的投影记为 $(i_1{'},i_2{‘},i_3^{’}) $

由几何关系可知 $i_{\alpha}^{'} $与 $i_{\alpha} $之间夹角满足 $ \cos\beta=\sqrt{\frac{2}{3}}$

主应力空间在平面投影

$S_1i_1,S_2i_2,S_3i_3 $投影到 $\pi $平面上时,可得到它们的 $(x,y) $坐标

( 3 2 S 1 cos ⁡ β , − 1 2 S 1 cos ⁡ β ) ( 0 , S 2 cos ⁡ β ) ( − 3 2 S 3 cos ⁡ β , − 1 2 S 3 cos ⁡ β ) (\frac{\sqrt{3}}{2}S_1\cos\beta,-\frac{1}{2}S_1\cos\beta)\quad (0,S_2\cos\beta)\quad (-\frac{\sqrt{3}}{2}S_3\cos\beta,-\frac{1}{2}S_3\cos\beta) 23 S1cosβ,21S1cosβ)(0,S2cosβ)(23 S3cosβ,21S3cosβ)

  • $OS $在 $\pi $平面上的坐标可写为

{ x = 2 2 ( S 1 − S 3 ) = 2 2 ( σ 1 − σ 3 ) y = 6 6 ( 2 S 2 − S 1 − S 3 ) = 6 6 ( 2 σ 2 − σ 1 − σ 3 ) \begin{cases} x=\frac{\sqrt{2}}{2}(S_1-S_3)=\frac{\sqrt{2}}{2}(\sigma_1-\sigma_3)\\ y=\frac{\sqrt{6}}{6}(2S_2-S_1-S_3)=\frac{\sqrt{6}}{6}(2\sigma_2-\sigma_1-\sigma_3) \end{cases} {x=22 (S1S3)=22 (σ1σ3)y=66 (2S2S1S3)=66 (2σ2σ1σ3)
采用极坐标表示为
{ r = 1 2 ( σ 1 − σ 3 ) 2 + 1 6 ( 2 σ 2 − σ 1 − σ 3 ) 2 = 2 J 2 ′ tan ⁡ θ = 3 3 2 σ 2 − σ 1 − σ 3 σ 1 − σ 3 = 3 3 μ σ \begin{cases} r=\sqrt{\frac{1}{2}(\sigma_1-\sigma_3)^2+\frac{1}{6}(2\sigma_2-\sigma_1-\sigma_3)^2}=\sqrt{2J_2^{'}}\\ \tan \theta=\frac{\sqrt{3}}{3}\frac{2\sigma_2-\sigma_1-\sigma_3}{\sigma_1-\sigma_3}=\frac{\sqrt{3}}{3}\mu_{\sigma} \end{cases} {r=21(σ1σ3)2+61(2σ2σ1σ3)2 =2J2 tanθ=33 σ1σ32σ2σ1σ3=33 μσ
$-30^{\circ}\leq \theta \leq 30^{\circ} $

  • 偏应力不变量在 π \pi π平面的投影表示
    S 2 = − ( S 1 + S 3 ) S 1 − S 3 = 2 x = 2 r cos ⁡ θ S 1 + S 3 = − 2 3 y = − 2 3 r sin ⁡ θ → { S 1 = 2 2 x − 6 6 y = 2 3 r sin ⁡ ( θ + 2 π 3 ) S 2 = 2 3 y = 2 3 r sin ⁡ θ S 3 = − 2 2 x − 6 6 y = 2 3 r sin ⁡ ( θ − 2 π 3 ) \begin{gather*} S_2=-(S_1+S_3)\\ S_1-S_3=\sqrt{2}x=\sqrt{2}r\cos\theta\\ S_1+S_3=-\sqrt{\frac{2}{3}}y=-\sqrt{\frac{2}{3}}r\sin\theta\\ \to \begin{cases} S_1=\frac{\sqrt{2}}{2}x-\frac{\sqrt{6}}{6}y=\sqrt{\frac{2}{3}}r\sin(\theta+\frac{2\pi}{3})\\ S_2=\sqrt{\frac{2}{3}}y=\sqrt{\frac{2}{3}}r\sin\theta\\ S_3=-\frac{\sqrt{2}}{2}x-\frac{\sqrt{6}}{6}y=\sqrt{\frac{2}{3}}r\sin(\theta-\frac{2\pi}{3}) \end{cases} \end{gather*} S2=(S1+S3)S1S3=2 x=2 rcosθS1+S3=32 y=32 rsinθ S1=22 x66 y=32 rsin(θ+32π)S2=32 y=32 rsinθS3=22 x66 y=32 rsin(θ32π)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科研拓展人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值