基于yolov5的火焰+烟雾识别

1 准备工作

下载yolov5项目代码,并在本机上配置环境:正常按照requirements安装依赖包,下载权重文件即可。

2 训练数据

2.1 创建文件目录

在data文件夹下新建数据文件fire_data,fire_data文件下新建images和labels两个文件夹,文件夹内容如下:

  • images

    • train -----放训练图片
    • val -----放验证图片
  • labels —图像标注后的结果存放在这里

    • train -----放训练label
    • val -----放验证label

2.2 图像标记

通过labelimg工具,对图片进行标注,值得注意的是yolov5用的是yolo格式的文件:
第一个数字为标签序号,后四个数值为坐标【(x,y,w,h),其中(x,y)为矩形中心坐标,w为矩形相对宽度,h为矩形相对高度。(x,y,w,h)均进行了归一化】。
[外链图片转存失败,源站可能有防盗在这里插入!链机制,建描述]议将图片上https://传(imblog.csdnimg.cn/20004bMt10104911665.png#pic_center)https://img-第一个blog.csdnimg.cn/20201010104911665.png#pic_center)]
在标注前将VOC格式转换为YOLO即可:
在这里插入图片描述

2.3 新建yaml配置文件

在data文件夹下新建一个fire.yaml配置文件(可参考coco128.yaml文件)

# train and val datasets (image directory or *.txt file with image paths)
train: ./data/fire_data/images/train/
val: ./data/fire_data/images/val/

# number of classes
nc: 2

# class names
names: ['fire', 'smog']

同时将models/yolov5s.yaml文件中的类别数nc修改为2(我标记了两类fire和smog),这里我用的是yolov5s模型,如果你选则使用其他如yolov5l、yolov5m、yolov5x则修改对应yaml文件中的nc值。
在这里插入图片描述

3 训练模型

3.1 train.py

修改参数为前面设置好的配置文件:
在这里插入图片描述

3.2 test.py

同样的,因为train.py中调用了test.py,因此也要在test.py中修改参数。
在这里插入图片描述

3.3 运行train.py

训练时间有点长,默默等待就好啦!
训练完成后,训练好的模型在weights文件夹下,分别是last.pt和best.pt,可运行detect.py验证啦~
效果如下,开心( * ^ ▽ ^ * )
请添加图片描述

请添加图片描述

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rena要努力

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值