关于线性代数代数余子式的理解(余子式以及代数余子式求和)

本文分享了如何通过矩阵替换技巧快速求解工程数学中代数余子式的和,实例源于《工程数学线性代数》第六版,展示了如何利用特定行的常数替换求得复杂行列式的简便方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文内容来自于同济大学数学系编写的《工程数学 线性代数》第六版一书。 本文目的是为了记录自己在学习过程中的一些感觉特别牛逼的推到推论。  本文内容来自于本书P19以及P20。


先上书本内容:
                    图一
在这里插入图片描述
                     图二
在这里插入图片描述
                     图三
在这里插入图片描述
                     图四
在这里插入图片描述
先看图一,按照书中意思,当我们遇到求余子式或代数余子式之和时,我们可以用其他的数值代替我们所需要求和的哪一行数,而其他的数值保持与原行列式一样的数值,这样就能套用上述公式。
列如我们求第二行的2A21+4A22+3A23+``````+7A2n,那么我们就可以把第二行的数值设置为
2 4 3······7,这样我们就能求出代数余子式之和。这也就是为什么图三中会有一句“按(9)式可知A11+A12+A13+A14等于用1,1,1,1代替D的第一行所得行列式”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangBlossom

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值