MIT线性代数笔记-第19讲-行列式公式,代数余子式

19.行列式公式,代数余子式

行列式公式

考虑将一个 n n n阶方阵的第一行依照列和性质三拆分为 n n n个方阵使得这些方阵的行列式之和等于原方阵的行列式,再将这 n n n个方阵各拆为 n n n个方阵,依次类推得到 n n n^{n} nn个方阵,这些方阵的行列式之和等于原方阵的行列式,再除去这些方阵中有零列的方阵,依排列组合原理可以得到 n ! n! n!个方阵,这些方阵都可以视为从对角阵置换而来

因此行列式的公式为 d e t   A = ∑ ( − 1 ) k a 1 , k 1 a 2 , k 2 ⋯ a n , k n det\ A = \sum (-1)^k a_{1,k_1} a_{2,k_2} \cdots a_{n,k_n} det A=(1)ka1,k1a2,k2an,kn,其中 k 1 , k 2 , ⋯   , k n k_1 , k_2 , \cdots , k_n k1,k2,,kn是将序列 1 , 2 , ⋯   , n 1 , 2 , \cdots , n 1,2,,n的元素次序交换 k k k次所得到的一个序列, ∑ \sum 号表示对 k 1 , k 2 , ⋯   , k n k_1 , k_2 , \cdots , k_n k1,k2,,kn取遍 1 , 2 , ⋯   , n 1 , 2 , \cdots , n 1,2,,n的一切排列求和


代数余子式

  1. 将一个 n n n阶方阵 A A A的第 i i i行和第 j j j列元素全部删去,得到的 n − 1 n - 1 n1阶方阵的行列式称为 a i , j a_{i , j} ai,j的余子式,记作 M i , j M_{i , j} Mi,j a i , j a_{i , j} ai,j的代数余子式为公式中含有 a i , j a_{i , j} ai,j的单项式除以 a i , j a_{i , j} ai,j后的和,记作 A i , j A_{i , j} Ai,j

    证明 A i , j = ( − 1 ) i + j M i , j A_{i , j} = (-1)^{i + j} M_{i , j} Ai,j=(1)i+jMi,j

    ​    设有方阵 A A A行列式 ∣ A ∣ = ∣ a 1 , 1 ⋯ a 1 , j ⋯ a 1 , n ⋯ ⋯ ⋯ ⋯ ⋯ a i , 1 ⋯ a i , j ⋯ a i , n ⋯ ⋯ ⋯ ⋯ ⋯ a n , 1 ⋯ a n , j ⋯ a n , n ∣ |A| = \begin{vmatrix} a_{1 , 1} & \cdots & a_{1, j} & \cdots & a_{1 , n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{i , 1} & \cdots & a_{i , j} & \cdots & a_{i , n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n , 1} & \cdots & a_{n, j} & \cdots & a_{n , n} \end{vmatrix} A= a1,1ai,1an,1a1,jai,jan,ja1,nai,nan,n

    ​    则 M i , j = ∣ a 1 , 1 ⋯ a 1 , j − 1 a 1 , j + 1 ⋯ a 1 , n ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ a i − 1 , 1 ⋯ a i − 1 , j − 1 a i − 1 , j + 1 ⋯ a i − 1 , n a i + 1 , 1 ⋯ a i + 1 , j − 1 a i + 1 , j + 1 ⋯ a i + 1 , n ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ a n , 1 ⋯ a n , j − 1 a n , j + 1 ⋯ a n , n ∣ M_{i , j} = \begin{vmatrix} a_{1 , 1} & \cdots &a_{1, j - 1} & a_{1, j + 1} & \cdots & a_{1 , n} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{i - 1 , 1} & \cdots & a_{i - 1 , j - 1} & a_{i - 1 , j + 1} & \cdots & a_{i - 1 , n} \\ a_{i + 1 , 1} & \cdots & a_{i + 1 , j - 1} & a_{i + 1 , j + 1} & \cdots & a_{i + 1 , n} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n , 1} & \cdots & a_{n, j - 1} & a_{n , j + 1} &\cdots & a_{n , n} \end{vmatrix} Mi,j= a1,1ai1,1ai+1,1an,1a1,j1ai1,j1ai+1,j1an,j1a1,j+1ai1,j+1ai+1,j+1an,j+1a1,nai1,nai+1,nan,n

    ​    把行列式中的每个单项式分为 − 1 -1 1的若干次方和数字两部分

    ​    可以发现 A i , j A_{i , j} Ai,j中每个单项式都是由 M i , j M_{i , j} Mi,j中对应单项式加工而得,这个加工即考虑了 a i , j a_{i , j} ai,j在选择组合中的作用,它会导致单项式数字部分各因数的列组成的序列(以下简称“列序列”)变为单调递增所需的行交换次数增加,即在原来所需的次数之上再增加几次,由此对单项式的正负性产生影响

    ​    考虑将 M i , j M_{i , j} Mi,j中所有单项式对应的选择组合都通过行交换使得“列序列”变为单调递增,那么对于任意一个选择组合,在此基础上再把 r o w   i   o f   A row\ i\ of\ A row i of A加到行交换后的第 i − 1 i - 1 i1行与第 i i i之间,此时有三种情况:

    ​    ① i = j i = j i=j:这个位置就是正确的位置,不用继续行交换,即增加 0 0 0

    ​    ② i < j i < j i<j:需要把 r o w   i   o f   A row\ i\ of\ A row i of A向下移动为第 j j j行,增加 j − i j - i ji

    ​    ③ i > j i > j i>j:需要把 r o w   i   o f   A row\ i\ of\ A row i of A向上移动为第 j j j行,增加 i − j i - j ij

    ​    对这三种情况,正负性的改变都可以用乘上 ( − 1 ) ∣ i − j ∣ (-1)^{|i - j|} (1)ij表示,而 ( − 1 ) ∣ i − j ∣ = ( − 1 ) i + j (-1)^{|i - j|} = (-1)^{i + j} (1)ij=(1)i+j

  2. 由代数余子式的定义推导可知将 A A A中某一行的所有元素分别乘上各自的代数余子式再相加可得 ∣ A ∣ |A| A,对于列类似

  3. 三对角矩阵的行列式满足 ∣ A n ∣ = ∣ A n − 1 ∣ − ∣ A n − 2 ∣ |A_{n}| = |A_{n - 1}| - |A_{n - 2}| An=An1An2

    证明:

    ​    三对角矩阵即形如 [ 1 1 0 0 ⋯ 0 0 0 0 1 1 1 0 ⋯ 0 0 0 0 0 1 1 1 ⋯ 0 0 0 0 ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ 0 0 0 0 ⋯ 1 1 1 0 0 0 0 0 ⋯ 0 1 1 1 0 0 0 0 ⋯ 0 0 1 1 ] \begin{bmatrix} 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 1 \end{bmatrix} 110000111000011000001000000100000110000111000011 n n n阶方阵,记作 A n A_n An

    ​    所以 a 1 , 1 , a 1 , 2 a_{1 , 1} , a_{1 , 2} a1,1a1,2的代数余子式分别为 ∣ A n − 1 ∣ , − ∣ A n − 2 ∣ |A_{n - 1}| , -|A_{n - 2}| An1,An2,又第一行除 a 1 , 1 , a 1 , 2 a_{1 , 1} , a_{1 , 2} a1,1a1,2外都无法对行列式产生贡献,所以 ∣ A n ∣ = a 1 , 1 ∣ A n − 1 ∣ − a 1 , 2 ∣ A n − 2 ∣ = ∣ A n − 1 ∣ − ∣ A n − 2 ∣ |A_n| = a_{1 , 1} |A_{n - 1}| - a_{1 , 2} |A_{n - 2}| = |A_{n - 1}| - |A_{n - 2}| An=a1,1An1a1,2An2=An1An2

  4. 任意高次函数都可以表示成某个有规律的矩阵的行列式的形式

    即对于 f ( x ) = a 0 x n + a 1 x n − 1 + ⋯ + a n − 1 x + a n f(x) = a_0 x^n + a_1 x^{n - 1} + \cdots + a_{n - 1} x + a_n f(x)=a0xn+a1xn1++an1x+an

    f ( x ) = ∣ a 0 a 1 a 2 ⋯ a n − 1 a n − 1 x 0 ⋯ 0 0 0 − 1 x ⋯ 0 0 0 0 − 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ 0 0 0 ⋯ − 1 x ∣ f(x) = \begin{vmatrix} a_0 & a_1 & a_2 & \cdots & a_{n - 1} & a_n \\ -1 & x & 0 & \cdots & 0 & 0 \\ 0 & -1 & x & \cdots & 0 & 0 \\ 0 & 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & x \end{vmatrix} f(x)= a01000a1x100a20x10an10001an000x

    证明: 考虑计算 a i a_i ai的代数余子式,若 i ≠ 0 i \ne 0 i=0则第一列只有取 − 1 -1 1时才能产生贡献,这样也把第二行取掉了,那么第二列也只能取 − 1 -1 1,依此类推,第 1 ∼ i 1 \sim i 1i列都只能取 − 1 -1 1,第 i + 2 i + 2 i+2行由于 − 1 -1 1被挖去了,所以只有取 x x x时才能产生贡献,这样也把第 i + 2 i + 2 i+2列取掉了,那么第 i + 3 i + 3 i+3行也只能取 x x x,依此类推,第 i + 2 ∼ n + 1 i + 2 \sim n + 1 i+2n+1行都只能取 x x x,这等价于第 i + 2 ∼ n + 1 i + 2 \sim n + 1 i+2n+1列都只能取 x x x,这样 a i a_i ai的余子式中 x x x的次数为 n − i n - i ni,与函数中一致, − 1 -1 1的次数为 i i i,刚好比 a i a_i ai的行数加列数少 2 2 2,二者相加后定为偶数,不会改变系数的正负,因此函数可以表示成上述矩阵的行列式


打赏

制作不易,若有帮助,欢迎打赏!
赞赏码

支付宝付款码

  • 22
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒蜩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值