线性代数中的余子式、代数余子式、行列式

本文详细介绍了矩阵中元Aij的余子式定义及其构造方法,并进一步解释了代数余子式的概念及其计算公式。此外还说明了如何利用代数余子式来计算矩阵的行列式及伴随矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设有n×n矩阵A:

则Aij的余子式Bij为:划去Aij所在的第i行与第j列的元,剩下的元不改变原来的顺序所构成的n-1阶矩阵的行列式称为元Aij的余子式:

Aij余子式矩阵:将矩阵A中所有元替换为其余子式后所组成的矩阵:

代数余子式Cij = (-1)^(i+j)Bij

代数余子式矩阵:

行列式:矩阵A任意一行(列)的各元素与其对应的代数式余子式乘积之和,比如:

d = A11C11 + A12C12 + ... + A1jC1j + ... + A1nC1n

伴随矩阵:代数余子式矩阵C的转置矩阵:

摘自  https://blog.csdn.net/zws322/article/details/78363515

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值