完全背包问题(动态规划(DP))

原题

完全背包问题

有n种重量和价值分别为wi,vi的物品。从这些物品中挑选总重量不超过W的物品,求出挑选物品价值总和的最大值。在这里,每种物品可以挑选任意多件。
1<=n<=100
1<=wi,vi<=100
1<=W<=10000

样例输入


n=3

(w,v)={(3,4),(4,5),(2,3)}

W=7


样例输出


10(0号物品选1个,2号物品选2个)

涉及知识及算法


递推关系:
dp[0][j]=0
dp[i+1][j]=max{dp[i][j-k*w[i]]+k*v[i]|0<=k}
但直接这样去写程序是三重循环,时间复杂度为O(mW^2).
在这个算法中有多余的计算:
在dp[i+1][j]的计算中选择k(k>=1)个 i 物品的情况,与在dp[i+1][j-w[i]]的计算中选择k-1的情况是相同的,所以dp[i+1][j]的递推中k>=1部分的计算已经在dp[i+1][j-w[i]]的计算中完成了。那么可以按照如下方式进行变形:
dp[i+1][j]
=max{dp[i][j-k*w[i]]+k*v[i]|0<=k}
=max(dp[i][j],max{dp[i][j-k*w[i]]+k*v[i]|1<=k})
=max(dp[i][j],max{dp[i][(j-w[i])-k*w[i]]+k*v[i]|0<=k}+v[i])
=max(dp[i][j],dp[i+1][j-w[i]]+v[i])
这样一来就可以用O(nW)时间解决问题。

代码

void solve()
{
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<=W;j++)
        {
            if(j<w[i])
            {
                dp[i+1][j]=dp[i][j];
            }
            else 
            {
                dp[i+1][j]=max(dp[i][j],dp[i+1][j-w[i]]+v[i]);
            }
        }
    }
    printf("%d\n",dp[n][W]);
}

此外,之前提到的01背包问题和这里的完全背包问题,可以通过不断重复利用一个数组来实现。
01背包问题的情况
void solve()
{
    for(int i=0;i<n;i++)
    {
        for(int j=W;j>=w[i];j--)
        {
            dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
        }
    }
    printf("%d\n",dp[w]);
}
完全背包问题的情况
int dp[MAX_W+1];
void solve()
{
    for(int i=0;i<n;i++)
    {
        for(int j=w[i];j<=W;j++)
        {
            dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
        }
    }
    printf("%d\n",dp[w]);
}
注:文章转载自《挑战程序设计竞赛》(第二版)


  • 4
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值