2016.4.15 nature deep learning review[3]

这篇博客探讨了循环神经网络(RNN)在处理序列数据如文本和语音方面的应用,以及其在动态系统中的优势。RNN在训练时遇到梯度消失或爆炸的问题,但LSTM的引入解决了这一问题,使其在预测文本、机器翻译等领域表现出色。此外,还提到了神经图灵机和记忆网络在增强RNN记忆能力上的进展,以及RNN在图像描述和理解语言中的潜力。
摘要由CSDN通过智能技术生成

循环神经网络一段。反向传播最令人激动的应用是应用于rnn的,对于包含序列化输入的文本来说,比如说语言和语音,通常使用rnn来进行处理。rnn每次处理一个序列中的一个元素。保持隐藏层的神经元作为一个状态向量,能够精确的表达这个序列过去元素的历史信息。当我们讲输出的隐藏层看作是不同的step的时候,我们可以将它们看作是在一个深度网络中的不同层次,也就能够应用反向传播去训练rnn

Rnn对于动态系统非常管用,但是训练是个大问题,因为使用反向传播或者梯度下降在每步汇总都会缩小或者增大,所以经过许多步之后容易梯度爆炸,或者梯度扩散。

不过多亏了结构上的优势和训练上的方法,rnn在预测文本的下一个字符上非常有优势.有时候rnn也应用在负载一些的任务上,比如说读过一个英语句子之后,一个编码网络可以学到这个句子,使得隐藏层中的向量能够很好的代表原来的句子。这个向量可以作为解码网络隐藏状态的初始化,解码网络用于输出第一个法语翻译单词的概率分布。第一个单词确定了之后,能够继续输出第二个单词的概率分布,直到翻译完成。总的来说,这个过程根据一个英语句子,通过概率来产生一个法语翻译。这个简单直接的机器翻译的方法很有竞争力,并且引发了人们的思考:是否可以用规则理解一句话,还是有许多音素共同构成了理解(?似乎是?)

除了将一句话从法语翻译成英语,同样可以将一幅图的理解翻译成一段英文的文字。编码是一个convnet能够将像素图片转化成为一个激活响亮,decoder是一个rnn用来进行机器翻译和语言模型。最近有很多有趣的研究。

Rnn的展开形式可以看作是深度前馈网络,但是每一层之间有相同的权重,尽管它们的主要目的是长期的一个学习,但是理论上和经验上的研究显示很难长时间的存储信息。

所以为了纠正这一点,就发明了lstm,能够记忆本层的信息,所以在每次训练的时候都会把上一次的结果累计下来,然后再和本次的结果相加,这样能够使得神经网络能够记住之前的信息,同时还有一个小开关控制是否这个按钮要清零。

Lstm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值