协方差矩阵及其计算方法

观测矩阵

例:如果观测 N N N个人的体重 w w w和身高 h h h,这样会形成 R 2 R^2 R2的样本空间,观测向量 X j X_j Xj X j ⊆ R 2 X_j\subseteq R^2 XjR2)表示第 j j j个人体重和身高,观测矩阵可以表示为:

[ w 1 w 1 … w N h 1 h 2 … h N ] \begin{bmatrix}w_1&w_1&\dots &w_N\\h_1&h_2&\dots &h_N \end{bmatrix} [w1h1w1h2wNhN]

其中:
X 1 = [ w 1 h 1 ] X_1=\begin{bmatrix}w_1\\h_1 \end{bmatrix} X1=[w1h1] X 2 = [ w 2 h 2 ] X_2=\begin{bmatrix}w_2\\h_2 \end{bmatrix} X2=[w2h2] X N = [ w N h N ] X_N=\begin{bmatrix}w_N\\h_N \end{bmatrix} XN=[wNhN],这些为观测向量

均值和协方差

假设 [ X 1 X 2 … X N ] [X_1\quad X_2\quad \dots \quad X_N] [X1X2XN] p × N p\times N p×N的观测矩阵,观测向量 X 1 X_1 X1 X 2 X_2 X2 X N X_N XN的样本均值 M M M为:

M = 1 N ( X 1 + X 2 + ⋯ + X N ) M=\dfrac{1}{N}(X_1+X_2+\dots +X_N) M=N1(X1+X2++XN)

如果将原观测测向量画成散列图(scatter),那么样本均值 M M M就是散列图中数据的中心。

X ^ k = X k − M \hat{X}_{k}=X_k-M X^k=XkM k = 1 , 2 , … , N k=1,2,\dots ,N k=1,2,,N

则构成新的矩阵 B = [ X ^ 1 X ^ 2 … X ^ N ] B=[\hat{X}_{1}\quad \hat{X}_{2}\quad \dots \quad \hat{X}_{N}] B=[X^1X^2X^N],此矩阵 B B B称为平均偏差形式,且具有零样本均值。矩阵 B B B的散列图的中心在坐标原点。

协方差矩阵(covariance matrix):协方差矩阵是一个 p × p p\times p p×p的矩阵 S S S,且满足: S = 1 N − 1 B B T S=\dfrac{1}{N-1}BB^T S=N11BBT

由于任何具有 B B T BB^T BBT的矩阵都是半正定的(如果 B B B m × n m\times n m×n的矩阵,那么 B B T BB^T BBT是半正定的),所以 S S S也是半正定的。

注:协方差矩阵也常记作 Σ \Sigma Σ

:从一个总体中随机抽取4个样本做3次测量,每个样本的观测向量为:
X 1 = [ 1 2 1 ] X_1=\begin{bmatrix}1\\2\\1 \end{bmatrix} X1=121 X 2 = [ 4 2 13 ] X_2=\begin{bmatrix}4\\2\\13 \end{bmatrix} X2=4213 X 3 = [ 7 8 1 ] X_3=\begin{bmatrix}7\\8\\1 \end{bmatrix} X3=781 X 4 = [ 8 4 5 ] X_4=\begin{bmatrix}8\\4\\5 \end{bmatrix} X4=845
求样本均值及协方差矩阵。

解:

样本均值:

M = 1 4 ( [ 1 2 1 ] + [ 4 2 13 ] + [ 7 8 1 ] + [ 8 4 5 ] ) = 1 4 [ 20 16 20 ] = [ 5 4 5 ] M=\dfrac{1}{4}(\begin{bmatrix}1\\2\\1 \end{bmatrix}+\begin{bmatrix}4\\2\\13 \end{bmatrix}+\begin{bmatrix}7\\8\\1 \end{bmatrix}+\begin{bmatrix}8\\4\\5 \end{bmatrix})=\dfrac{1}{4}\begin{bmatrix}20\\16\\20 \end{bmatrix}=\begin{bmatrix}5\\4\\5 \end{bmatrix} M=41(121+4213+781+845)=41201620=545

X 1 X_1 X1 X 2 X_2 X2 X N X_N XN中减去样本均值 M M M得:

X 1 ^ = [ − 4 − 2 − 4 ] \hat{X_1}=\begin{bmatrix}-4\\-2\\-4 \end{bmatrix} X1^=424 X 2 ^ = [ − 1 − 2 8 ] \hat{X_2}=\begin{bmatrix}-1\\-2\\8 \end{bmatrix} X2^=128 X 3 ^ = [ 2 4 − 4 ] \hat{X_3}=\begin{bmatrix}2\\4\\-4 \end{bmatrix} X3^=244 X 4 ^ = [ 3 0 0 ] \hat{X_4}=\begin{bmatrix}3\\0\\0 \end{bmatrix} X4^=300

所以得到 B B B矩阵:

B = [ − 4 − 1 2 3 − 2 − 2 4 0 − 4 8 − 4 0 ] B=\begin{bmatrix}-4&-1&2&3\\-2&-2&4&0\\-4&8&-4&0 \end{bmatrix} B=424128244300

矩阵 B B B为原样本经过居中处理后的样本。

所以,样本的协方差矩阵 S S S为:

S = 1 N − 1 B B T = 1 4 − 1 [ − 4 − 1 2 3 − 2 − 2 4 0 − 4 8 − 4 0 ] [ − 4 − 2 − 4 − 1 − 2 8 2 4 − 4 3 0 0 ] = 1 3 [ 30 18 0 18 24 − 24 0 − 24 96 ] = [ 10 6 0 6 8 − 8 0 − 8 32 ] S=\dfrac{1}{N-1}BB^T=\dfrac{1}{4-1}\begin{bmatrix}-4&-1&2&3\\-2&-2&4&0\\-4&8&-4&0 \end{bmatrix}\begin{bmatrix}-4&-2&-4\\-1&-2&8\\2&4&-4\\3&0&0 \end{bmatrix}=\dfrac{1}{3}\begin{bmatrix}30&18&0\\18&24&-24\\0&-24&96 \end{bmatrix}=\begin{bmatrix}10&6&0\\6&8&-8\\0&-8&32 \end{bmatrix} S=N11BBT=411424128244300412322404840=313018018242402496=10606880832

x 1 , x 2 , … , x p x_1,x_2,\dots,x_p x1,x2,,xp表示 X X X的坐标,例如 x 1 x_1 x1 X 1 , X 2 , … , X N X_1,X_2,\dots,X_N X1,X2,,XN集合中变化的第一个坐标的数值。对 j = 1 , 2 , … , p j=1,2,\dots,p j=1,2,,p(本例中 p = 3 p=3 p=3 N = 4 N=4 N=4),矩阵 S S S的对角线元素 s j j s_{jj} sjj就是 x j x_j xj的方差, x j x_j xj的方差用于度量 x j x_j xj值的分散性。
所以本例中, x 1 x_1 x1方差为10, x 2 x_2 x2方差为8, x 3 x_3 x3方差为32。
x 3 x_3 x3方差为32,大于 x 1 x_1 x1方差10,这表明对应向量中第三个元素的集合包含比第一个元素的集合更大的取值范围。

数据的总方差是矩阵 S S S对角线上方差的和,也就是 S S S的迹(trace) t r ( S ) tr(S) tr(S)

矩阵 S S S中的元素 s i j ( i ≠ j ) s_{ij}(i\ne j) sij(i=j)称为 x i x_i xi x j x_j xj协方差

协方差就是不同维度的数据(减去平均值后,即居中处理后)的点积,再乘以 1 N − 1 \dfrac{1}{N-1} N11
x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3在本例中是4个样本的三个维度,即 x 1 = [ − 4 − 1 2 3 ] x_1=[-4\quad -1 \quad 2 \quad 3] x1=[4123] x 2 = [ − 2 − 2 4 0 ] x_2=[-2\quad -2 \quad 4 \quad 0] x2=[2240] x 3 = [ − 4 8 − 4 0 ] x_3=[-4\quad 8 \quad -4 \quad 0] x3=[4840]

本例中, x 1 x_1 x1 x 3 x_3 x3之间的协方差是0,这是因为 s 13 = 0 s_{13}=0 s13=0,这种情况在统计学上被称为: x 1 x_1 x1 x 3 x_3 x3是无关的。

如果大部分或者所有变量 x 1 x_1 x1 x 2 x_2 x2…、 x p x_p xp是无关的,即当 X 1 , X 2 , … , X N X_1,X_2,\dots,X_N X1,X2,,XN的协方差矩阵是对角阵或几乎是对角阵时, X 1 , X 2 , … , X N X_1,X_2,\dots,X_N X1,X2,,XN中多变量的数据的分析可以简化。

  • 43
    点赞
  • 93
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
根据引用\[1\]和引用\[2\]的内容,协方差矩阵是一个 p × p 的矩阵,其中 p 表示变量的数量。协方差矩阵的计公式为 S = 1 N − 1 B B T ,其中 N 表示观测样本的数量,B 是一个 p × N 的矩阵,每一列代表一个观测向量。协方差矩阵的元素表示不同变量之间的协方差。 对于计文字的协方差矩阵,我们需要将文字转化为数值表示。假设我们有 n 个文字样本,每个样本由 p 个特征表示。我们可以将每个文字样本表示为一个 p 维的向量,其中每个维度代表一个特征。然后,我们可以根据这些向量计协方差矩阵。 具体计步骤如下: 1. 将 n 个文字样本表示为一个 n × p 的矩阵 X,其中每一行代表一个文字样本。 2. 对 X 的每一列进行中心化处理,即减去该列的均值,得到一个中心化的矩阵 X_c。 3. 计中心化矩阵 X_c 的协方差矩阵 S,即 S = 1 n − 1 X_c T X_c。 这样,我们就得到了文字的协方差矩阵协方差矩阵的每个元素表示不同特征之间的协方差,可以用来度量文字特征之间的相关性。 #### 引用[.reference_title] - *1* *3* [协方差矩阵及其计算方法](https://blog.csdn.net/Zijie123pea/article/details/115864880)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [协方差协方差矩阵的数学概念及法计](https://blog.csdn.net/lyq_12/article/details/83780932)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值