常微分方程模型及分析——Lanchester战斗模型

来源是西电2024数学建模双创课中《常微分方程模型及分析》的作业。

题目:在第一次世界大战中,甲、乙两方战役的胜负,往往由双方兵力多少及战斗力强弱两个因素决定,其中,兵力因战斗及非战斗减员而减少,因增援而增加;战斗力与射击次数及命中率有关。请按照正规战争和游击战争两类情况应用常微分方程进行建模,分析并预测战役结局。

分析:根据Lanchester战斗模型,记甲、乙两方兵力分别为关于时间$t$的函数$x\left( t \right)$$y\left( t \right)$,并且连续可导。显然有“战斗力的变化率=后勤补给率-自然损失率(非战斗减员)-对方的杀伤率(战斗减员)”。

常规战

常规战模型及其解

讨论常规战下的模型

\left\{ \begin{gathered} x'(t) = P(t) - ax - by \hfill \\ y'(t) = Q(t) - cx - ey \hfill \\ \end{gathered} \right.

其中a,e分别为甲和乙的自然损失率,其中b,c分别为乙和甲的杀伤率,P(t),Q(t)分别为甲和乙的后勤补给率。为简化,不妨假设P(t)=p,Q(t)=q分别为一常数。

下面简要描述一下求解以下常微分非自治线性方程组的过程:

\left\{ {\begin{array}{*{20}{l}} {x'(t) = p - ax - by} \\ {y'(t) = q - cx - ey} \end{array}} \right.

先求解对应的齐次方程组

\left\{ {\begin{array}{*{20}{l}} {x'(t) = - ax - by} \\ {y'(t) = - cx - ey} \end{array}} \right.    

计算特征方程:

\left| {\begin{array}{*{20}{c}} {a + \lambda }&b \\ c&{e + \lambda } \end{array}} \right| = 0

展开行列式,得到特征方程:

{\lambda ^2} + (a + e)\lambda + (ae - bc) = 0

使用求根公式求解二次方程:

{\lambda _{1,2}} = \frac{​{ - (a + e) \pm \sqrt {​{​{(a + e)}^2} - 4(ae - bc)} }}{2}

根据特征根,齐次方程组的通解为:

{X_h}(t) = {C_1}{e^{​{\lambda _1}t}}\left[ {\begin{array}{*{20}{c}} 1 \\ {\frac{c}{​{​{\lambda _1} + a}}} \end{array}} \right] + {C_2}{e^{​{\lambda _2}t}}\left[ {\begin{array}{*{20}{c}} 1 \\ {\frac{c}{​{​{\lambda _2} + a}}} \end{array}} \right]

其中C_1C_2是任意常数。

接着寻找非齐次方程组的特解,假设特解的形式为常数向量:

{X_p}(t) = \left[ {\begin{array}{*{20}{c}} A \\ B \end{array}} \right]

代入非齐次方程组,得到:

\left[ {\begin{array}{*{20}{c}} p \\ q \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {p - aA - bB} \\ {q - cA - eB} \end{array}} \right]

解这个线性方程组,得到特解:

\begin{gathered} A = \frac{​{pb - qe}}{​{ab + be + ce}} \hfill \\ B = \frac{​{pc - qa}}{​{ac + bc + ce}} \hfill \\ \end{gathered}

构造非齐次方程组的通解,非齐次方程组的通解是齐次解与特解之和:

X(t) = {X_h}(t) + {X_p}(t)

因此,原方程组的通解为:

X(t) = {C_1}{e^{​{\lambda _1}t}}\left[ {\begin{array}{*{20}{c}} 1 \\ {\frac{c}{​{​{\lambda _1} + a}}} \end{array}} \right] + {C_2}{e^{​{\lambda _2}t}}\left[ {\begin{array}{*{20}{c}} 1 \\ {\frac{c}{​{​{\lambda _2} + a}}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {\frac{​{pb - qe}}{​{ab + be + ce}}} \\ {\frac{​{pc - qa}}{​{ac + bc + ce}}} \end{array}} \right]

常规战的平方率

为分析射击次数及命中率对战局的影响,采取简化模型

$\left\{ \begin{gathered} x'(t) = - by \hfill \\ y'(t) = - cx \hfill \\ \end{gathered} \right.$

两式相除,得

\frac{​{dy}}{​{dx}} = \frac{​{cx}}{​{by}}

b{y^2} - c{x^2} = by_0^2 - cx_0^2 = K

${\left( {\frac{​{​{y_0}}}{​{​{x_0}}}} \right)^2}\begin{array}{*{20}{c}} {} \\ {} \end{array}\begin{array}{*{20}{c}} > \\ < \end{array}\begin{array}{*{20}{c}} {} \\ {} \end{array}\frac{c}{b}$

记射击率为$r$,命中率为$p$,则有

$\frac{c}{b} = \frac{​{​{r_x}{p_x}}}{​{​{r_y}{p_y}}}$  

综合所有因素考虑,可以得到结论:常规战胜负取决于开战前力量(人数)对比,且此比值平方放大,具体如图:

游击战

游击战模型

$\left\{ \begin{gathered} x'(t) = P(t) - ax - gxy \hfill \\ y'(t) = Q(t) - ey - hxy \hfill \\ \end{gathered} \right.$

其中a,e分别为甲和乙的自然损失率,其中g,h分别为乙和甲的杀伤率,P(t),Q(t)分别为甲和乙的后勤补给率。

与常规战模型比较,最显著的特征是游击战的战斗伤亡率和自身部队战斗力正相关。

游击战的线性率

同样,只考虑战斗减员,简化模型为

$\left\{ \begin{gathered} x'(t) = - gxy \hfill \\ y'(t) = - hxy \hfill \\ \end{gathered} \right.$

相除,交叉相乘得

$g\left( {y - y_0^{}} \right) = h\left( {x - x_0^{}} \right)$  

$gy - hx = gy_0^{} - hx_0^{} = L$

进一步有

$\frac{​{​{y_0}}}{​{​{x_0}}}\begin{array}{*{20}{c}} {} \\ {} \end{array}\begin{array}{*{20}{c}} > \\ < \end{array}\begin{array}{*{20}{c}} {} \\ {} \end{array}\frac{h}{g}$

其中$h = {r_x}\frac{​{​{S_{rx}}}}{​{​{S_y}}},g = {r_y}\frac{​{​{S_{ry}}}}{​{​{S_x}}}$,里面$r$为射击率、${S_r}$一次射击的有效面积、$S$为游击队员的活动面积,即:

$\frac{​{​{S_y}{y_0}}}{​{​{S_x}{x_0}}}\begin{array}{*{20}{c}} {} \\ {} \end{array}\begin{array}{*{20}{c}} > \\ < \end{array}\begin{array}{*{20}{c}} {} \\ {} \end{array}\frac{​{​{r_x}{S_{rx}}}}{​{​{r_y}{S_{ry}}}}$

结论:战前力量对比与队员活动面积对比同样重要,如图:

其他:游击队VS常规部队

游击队VS常规部队模型

$\left\{ \begin{gathered} x'(t) = P(t) - ax - gxy \hfill \\ y'(t) = Q(t) - cx - ey \hfill \\ \end{gathered} \right.$

其中a,e分别为甲和乙的自然损失率,其中g,c分别为乙和甲的杀伤率,P(t),Q(t)分别为甲和乙的后勤补给率。

游击队VS常规部队的抛物律

简化模型为

$\left\{ \begin{gathered} x'(t) = - gxy \hfill \\ y'(t) = - bx \hfill \\ \end{gathered} \right.$

同理推得

其中$b = {r_x}{p_x},g = {r_y}\frac{​{​{S_{ry}}}}{​{​{S_x}}}$,里面$r$为射击率、${S_r}$一次射击的有效面积、$S$为游击队员的活动面积,即:

${\left( {\frac{​{​{y_0}}}{​{​{x_0}}}} \right)^2}\begin{array}{*{20}{c}} {} \\ {} \end{array}\begin{array}{*{20}{c}} > \\ < \end{array}\begin{array}{*{20}{c}} {} \\ {} \end{array}2\frac{​{​{r_x}}}{​{​{r_y}}}\frac{​{​{S_x}{p_x}}}{​{​{S_{ry}}}}\frac{1}{​{​{x_0}}}$

结论:该模型适合以弱胜强。如图所示:

总结

常规战胜负取决于开战前力量(人数)对比,且此比值平方放大,具有集中优势兵力(如三大战役);游击战战前力量对比与队员活动面积对比同样重要;当游击队与常规部队交战时,更有利于以弱胜强。

  • 6
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Lanchester战争预测模型是一种用于预测古代战争中双方损失的数量的模型。该模型假设双方的装备能力相当,单位时间内的损失与战线的长度成正比,并且双方损失的数量相等。这个模型主要适用于古代战争中以短兵相接的肉搏战为主的情况,其中肉搏战的特点是一对一的战斗。\[2\]根据这个模型,可以通过建立微分方程模型来预测战争中双方的损失情况。这种预测模型是预测学中的一种应用,预测学是一门研究预测理论、方法及应用的新兴科学。预测学的基本理论包括惯性原理、类推原理和相关原理,而预测的核心问题则是预测的技术方法或数学模型。\[1\]\[3\] #### 引用[.reference_title] - *1* *3* [数模算法与应用:预测模型(1)美日硫磺岛战役模型](https://blog.csdn.net/weixin_69250798/article/details/125489309)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [数学狂想曲(八)——核弹当量问题, Lanchester战争模型, 随机过程](https://blog.csdn.net/antkillerfarm/article/details/82835647)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赭红色的锆石

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值