XLA简介

XLA是TensorFlow中的一个编译器,旨在提高模型性能,通过融合算子减少内存占用和提高计算效率。它分析计算图,将多个element-wise算子融合为高效kernel,减少了中间结果的内存开销和加载时间。XLA还支持AOT编译,减少移动设备上的文件大小,并简化了对新硬件后端的支持。
摘要由CSDN通过智能技术生成


XLA(Accelerated Linear Algebra)-加速线性代数,是Google推出的高性能机器学习领域编译器,它可以在不更改源代码的条件下加速Tensorflow模型。

TensorFlow在设计时主要考虑灵活性和可拓展性,而灵活性往往和高性能不可兼得,因此TensorFlow的计算性能有所欠缺。XLA就是为了解决这个问题而提出的。

XLA为什么有效

  1. 融合可组合算子从而提高性能
    XLA通过对TensorFlow运行时的计算图进行分析,将多个低级算子进行融合从而生成高效的机器码。例如:
    可融合的计算图示例
    因为上面计算图中的许多算子都是逐元素(element-wise)的计算,所以可以融合为一个element-wise的循环计算kernel中。matmul的结果加biases时为element-wise;然后对Add的结果每个进行Relu;再对Relu的结果每个元素取幂运算。
    通过将这些算子融合,可以减少申请这些算子间的中间结果所占用的内存。同时因为将多个kernel融合为了一个kernel,因此减少了加载kernel的时间消耗。
    因此,XLA对模型的性能提升主要来自于将多个连续的element-wise算子融合为一个算子。

  2. 提高内存利用率
    通过对内存使用的分析与规划,原则上可以消除许多中间数据的内存占用。

  3. 减少模型可执行文件大小
    对于移动设备场景,XLA可以减少TensorFlow模型的执行文件大小。通过AOT(ahead-of-time

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值