行百里者半九十

程序员们都有一种可怕的乐观主义情绪。如果你是个好程序员,你一定体会过代码在指尖流淌,流程在脑海中跳转,程序以自己所能设想的最完美的方式运行的那种如同造物般的快感;你也一定会喜欢那种在无比复杂的逻辑中轻巧加入几个不起眼的指令却改变了整个程序的结果的操作感;更难得的,你身在一个和谐的团队中,每个成员都象最了不起的音乐家,小心而准确的演奏着自己的乐器,整个项目象贝多芬的交响乐,复杂而精确的前进。这种创造、控制和复杂系统的自和谐,给我们快乐,让我们洋溢着天下事无不可为的乐观和豪情。

这是身为IT民工的最宝贵的体验;这是能让我们这些IT民工分享创造者荣耀的唯一办法;这是IT民工们的乐趣;这也是我们的最要小心的原罪。

乐观和豪情并不是IT民工们的过错,只是象所有擅长逻辑思考和习惯以归纳法处理问题的人一样,我们都有透过现象看本质的本领。而往往,我们会被庞大的(这都是开发末期才被人承认的)软件系统中那最核心和最简洁的本质吸引,那才是我们要做的,激动人心的酷功能。至于那些能用就行的交互界面、可有可无的附加功能、小白才会去看的帮助文档、给菜鸟准备的安装程序...别开玩笑了,那些我们几天就能搞定...

现实往往是残酷的。菜鸟和老手写一个栈管理程序的效率有天壤之别,而他们写同样的帮助文档的时间绝不会相差太多。不幸的是,老手们往往认为,能用同样的高效率把项目中所有事情都搞定。乐观和豪情,让我们的项目日程显得不那么严谨。更雪上加霜的事,有许多的管理者,也倾向于,程序员能以同样的高效率,将项目进行到底。我见过许多被程序员的乐观影响了的管理者,看过几个非常酷的小DEMO,带着“功能都实现了,已经成功了一大半”的兴奋,开始规划着上市的美好远景。是啊,你能相信只用了一个月就把诺亚方舟的框子搭好了的超级木匠团队,得花上大半年来把它调试打磨吗?谁都会觉得,明天我们就能起航。

然而,行百里者半九十。软件项目,往往是用一半的时间做完九成的任务,一半的时间处理那些好像明天就能完成但是明天永远不会来的工作。

每当看到一张软件日程规划表,我都会提醒自己,注意那被忽略掉的百分之十。

【源码免费下载链接】:https://renmaiwang.cn/s/mz20w ### 数字万用表二极管档测试原理与使用技巧详解#### 一、测试原理概览数字万用表的二极管档是专为检测半导体元件如二极管设计的功能之一,它能准确判断二极管的好坏以及测量其正向压降。与传统的模拟式万用表相比,数字万用表的这一功能更为精确和直观。其工作原理基于向二极管施加一定电压并测量流过的电流,从而判断二极管的导通状态。#### 二、数字万用表二极管档的工作原理在讨论具体工作原理之前,我们先了解数字万用表二极管档与普通电阻档的区别。普通电阻档提供的测试电流较小,不足以充分激活半导体元件的PN结,导致测量结果不准确。然而,二极管档设计时考虑了这一问题,提供了更大的测试电流,确保了对半导体元件特性的有效评估。以DT830型数字万用表为例,其二极管档电路设计巧妙,提供约2.8V的基准电压,通过精密的分压电路确保电流适中,既不会损坏二极管也不会导致测量失准。具体电路中,基准电压源通过一系列电阻(如R17、R18等)分压后,向被测二极管VD提供测试电流。在没有接入二极管的情况下,电路中的A、B两点电压会稳定在特定值;一旦接入二极管,A点电压会被箝位至二极管的正向压降,大约0.7V(硅管)或0.3V(锗管)。此时,流入二极管的电流约为1mA(硅管)或1.3mA(锗管),足以激活二极管而不致于损害它。#### 三、安全保护机制值得注意的是,数字万用表在设计二极管档时还融入了安全保护机制。例如,当误将二极管档用于测量市电电压(AC220V)时,电路中设置的保护元件(如热敏电阻PTC和晶体管Q1、Q2)会启动,限制电流,避免对仪表造成损害。这种设计不仅提升了仪表的可靠性,也增强了操作者的安全性。#### 四、二极管档的使用技巧掌握正确的使用方法是发挥数字万用表二极管档优势的关键。以下是使用步骤:1. **连接仪
内容概要:本文详细比较了9种智能优化算法——CGO(混沌引力优化)、SCA(正弦余弦算法)、GWO(灰狼优化)、CSA(冠状病毒优化)、SSA(麻雀搜索算法)、HHO(哈里斯鹰优化)、WOA(鲸鱼优化算法)、PSO(粒子群优化)和TSO(穿越沙漠优化),并通过Matlab代码实现对这些算法的性能进行了仿真对比。文章重点展示了各算法在不同测试函数下的收敛速度、寻优能力及稳定性,并提供了完整的代码资源,便于读者复现实验结果。此外,文档还附带多个相关科研方向的技术支持介绍,涵盖机器学习、路径规划、信号处理、电力系统优化等多个领域,突出了智能优化算法在实际工程问题中的广泛应用价值。; 【9种优化算法比较】CGO、SCA、GWO、CSA、SSA、HHO、WOA、PSO、TSO智能优化算法比较(Matlab代码实现) 适合人群:具备一定Matlab编程基础,从事智能优化算法研究或应用的研究生、科研人员及工程技术人员,尤其适合正在开展算法改进与仿真实验的相关从业者; 使用场景及目标:①对比分析主流智能优化算法的性能差异,选择最适合特定问题的优化方法;②学习如何在Matlab中实现并测试优化算法,用于解决调度、路径规划、参数优化等实际科研与工程问题; 阅读建议:建议读者结合提供的Matlab代码逐项运行实验,深入理解每种算法的迭代机制与参数设置,同时参考文中提到的其他资源扩展应用场景,强化算法设计与调参能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值