知识点1:
项目已经部署上线:Web端演示、百度机器人端识别演示
项目结构:数据采集层~数据收集标注,深度模型层~YOLO,SSD,模型导出,Serving部署, 用户层~前端交互,(Web后台)对接部署模型
知识点2:
1】两步走的目标检测:先找出候选区域,后对区域进行调整进行分类
2】端到端的目标检测:采用一个网络一步到位,输入图片,输出位置和类别
知识点3:
目标检测的任务:
分类:。N个类别 。输入:图片 。输出:类别 。评估指标:accuracy(mAP)
定位: 。N个类别 。输入:图片 。输出:物体的位置坐标 。评估指标:IOU 。bounding box(bbox):(x,y,w,h) x,y表示物体的中心点位置,w,h表示中心点距离物体两边的长宽
xmin,ymin,xmax,ymax: 物体位置的左上角坐标、右下角的坐标
知识点4:
增加一个全连接层,FC1、FC2。Ground-truth bounding box(标注框)和Predicted bounding box(预测框)
FC1:作为类别的输出。FC2:作为这个物体位置数值的输出。