目标检测从入门到精通的一个项目笔记

这篇博客深入探讨了目标检测技术,从两步走的R-CNN到端到端的SPP-Net。介绍了R-CNN的滑动窗口方法、分类与边界框回归,以及其缺点。SPP-Net则通过空间金字塔池化解决了运算效率问题,实现了CNN层的共享计算。文章涵盖了目标检测的基础概念,如精度评估指标mAP,以及不同模型的优缺点。
摘要由CSDN通过智能技术生成

知识点1:

项目已经部署上线:Web端演示、百度机器人端识别演示

项目结构:数据采集层~数据收集标注,深度模型层~YOLO,SSD,模型导出,Serving部署, 用户层~前端交互,(Web后台)对接部署模型

知识点2:

1】两步走的目标检测:先找出候选区域,后对区域进行调整进行分类

2】端到端的目标检测:采用一个网络一步到位,输入图片,输出位置和类别

知识点3:

目标检测的任务:

分类:。N个类别 。输入:图片 。输出:类别 。评估指标:accuracy(mAP)

定位: 。N个类别 。输入:图片 。输出:物体的位置坐标 。评估指标:IOU 。bounding box(bbox):(x,y,w,h) x,y表示物体的中心点位置,w,h表示中心点距离物体两边的长宽

xmin,ymin,xmax,ymax: 物体位置的左上角坐标、右下角的坐标

知识点4:

增加一个全连接层,FC1、FC2。Ground-truth bounding box(标注框)和Predicted bounding box(预测框)

FC1:作为类别的输出。FC2:作为这个物体位置数值的输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值