Acwing_851(spfa求最短路)

原题链接:

851. spfa求最短路 - AcWing题库

题解:

相比于Bellman_ford算法的O(mn)复杂度,SPFA算法在最好情况下的时间复杂度为O(m),最坏情况下的时间复杂度则为O(mn)

代码:

虽然用STL实现邻接表更简单,但是还是链星的时间开销更小

用STL实现邻接表:
#pragma GCC optimize(2, 3, "Ofast", "inline")
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
int dis[N], state[N];
vector<pair<int,int>> v[N];//存储的是终点编号-距离
int n, m;

int spfa() {
	memset(dis, 0x3f, sizeof(dis));
	dis[1] = 0;

	queue<int> q;
	q.push(1);
	state[1] = 1;

	while (q.size()) {
		int F = q.front();
		q.pop();
		state[F] = 0;

		for (int i = 0;i < v[F].size();i++) {
			int y = v[F][i].first, z = v[F][i].second;
			if (dis[y] > dis[F] + z) {
				dis[y] = dis[F] + z;
				if (!state[y]) {
					q.push(y);
					state[y] = 1;
				}
			}
		}
	}

	if (dis[n] == 0x3f3f3f3f) return -1;
	//因为较大的值也会被更新为较小的值,所以在一定数据范围内,可以假定这个数如果大于0x3f3f3f3f / 2就比表示不存在满足条件的路径
	return dis[n];
}

int main() {
	cin >> n >> m;

	for (int i = 0;i < m;i++) {
		int x, y, z;cin >> x >> y >> z;
		v[x].push_back({ y,z });
	}
	int t = spfa();
	if (t == -1 && dis[n] != -1) cout << "impossible";//还有一种可能就是最小距离就是-1,因此需要特判一下
	else cout << t;
}
用手搓链表(链星)实现邻接表:
#include<bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10;

#define fi first
#define se second

typedef pair<int, int> PII;//到源点的距离,下标号

int h[N], e[N], w[N], ne[N], idx = 0;
int dist[N];//各点到源点的距离
bool st[N];
int n, m;
void add(int a, int b, int c) {
	e[idx] = b;w[idx] = c;ne[idx] = h[a];h[a] = idx++;
}

int spfa() {
	queue<PII> q;
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;
	q.push({ 0,1 });
	st[1] = true;
	while (q.size()) {
		PII p = q.front();
		q.pop();
		int t = p.se;
		st[t] = false;//从队列中取出来之后该节点st被标记为false,代表之后该节点如果发生更新可再次入队
		for (int i = h[t];i != -1;i = ne[i]) {
			int j = e[i];
			if (dist[j] > dist[t] + w[i]) {
				dist[j] = dist[t] + w[i];
				if (!st[j]) {//当前已经加入队列的结点,无需再次加入队列,即便发生了更新也只用更新数值即可,重复添加降低效率
					st[j] = true;
					q.push({ dist[j],j });
				}
			}
		}
	}
	if (dist[n] == 0x3f3f3f3f) return -1;
	else return dist[n];
}

int main() {
	scanf("%d%d", &n, &m);
	memset(h, -1, sizeof h);
	while (m--) {
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		add(a, b, c);
	}
	int res = spfa();
	if (res == -1&& dist[n] != -1) puts("impossible");
	else printf("%d", res);

	return 0;
}
SPFA算法(Shortest Path Faster Algorithm)是一种用于解决最短路问题的算法。它是一种单源最短路径算法,可以解决带有负权边的图的最短路径问题。 SPFA算法基本思想是使用队列对图中的所有节点进行遍历,对于每一个节点,如果它的邻居节点的最短路径可以通过当前节点更新,则将邻居节点加入队列中进行下一轮遍历,直到所有节点的最短路径都被更新后停止遍历。 在Java中,可以使用邻接矩阵或邻接表来表示图,并使用队列来实现SPFA算法。下面是一个使用邻接矩阵实现SPFA算法的Java代码示例: ```java import java.util.*; public class SPFA { public static void main(String[] args) { int[][] graph = { {0, 2, 5, Integer.MAX_VALUE, Integer.MAX_VALUE}, {Integer.MAX_VALUE, 0, 7, 1, Integer.MAX_VALUE}, {Integer.MAX_VALUE, Integer.MAX_VALUE, 0, 4, Integer.MAX_VALUE}, {Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 0, 3}, {Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 0} }; int[] dist = shortestPath(graph, 0); System.out.println(Arrays.toString(dist)); } public static int[] shortestPath(int[][] graph, int start) { int n = graph.length; int[] dist = new int[n]; Arrays.fill(dist, Integer.MAX_VALUE); dist[start] = 0; Queue<Integer> queue = new LinkedList<>(); queue.offer(start); boolean[] inQueue = new boolean[n]; inQueue[start] = true; while (!queue.isEmpty()) { int u = queue.poll(); inQueue[u] = false; for (int v = 0; v < n; v++) { if (graph[u][v] != Integer.MAX_VALUE && dist[v] > dist[u] + graph[u][v]) { dist[v] = dist[u] + graph[u][v]; if (!inQueue[v]) { queue.offer(v); inQueue[v] = true; } } } } return dist; } } ``` 在上面的代码中,我们使用一个二维数组`graph`来表示图,其中`graph[i][j]`表示从节点`i`到节点`j`的边的权重,如果没有边则为`Integer.MAX_VALUE`。函数`shortestPath`接受一个图和一个起点`start`,返回一个数组`dist`,其中`dist[i]`表示从起点`start`到节点`i`的最短路径。 在函数中,我们首先初始化`dist`数组为`Integer.MAX_VALUE`,表示所有节点到起点的距离都是无限大。然后将起点`start`加入队列中,并标记为已加入队列。进入循环后,每次取出队列中的一个节点`u`,将`u`标记为未加入队列,然后遍历`u`的所有邻居节点`v`,如果从起点到`v`的距离可以通过从起点到`u`再加上`u`到`v`的距离来更新,则更新`dist[v]`的值,并将`v`加入队列中,并标记为已加入队列。当队列为空时,所有节点的最短路径都已被更新,函数返回`dist`数组。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值