原题链接:
859. Kruskal算法求最小生成树 - AcWing题库
题解:
对于稠密图而言(m=n^2)的情况,使用朴素版Prim算法更好;
而对于稀疏图而言(m=n)的情况,则使用Kruskal算法更好,相比之下,堆优化版本的Prim反而没了用武之地。
Kruskal算法通过按边权从小到大的顺序选择边,将图中的节点逐渐连接形成树,确保不形成环,直到所有节点都连接在一起。
参考讲解:
AcWing 859. Kruskal算法求最小生成树---海绵宝宝来喽 - AcWing
代码:
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
const int M = 2e5 + 10;
int n, m;
int p[N];
struct edge {
int a, b, w;
bool operator < (const edge& e) const {
return w < e.w;
}
}edges[M];
int find(int x) {
if (x != p[x]) p[x] = find(p[x]);
return p[x];
}
int main() {
cin >> n >> m;
for (int i = 0;i < m;i++) {
int a, b, c;cin >> a >> b >> c;
edges[i] = { a,b,c };
}
sort(edges, edges + m);
for (int i = 1;i <= n;i++) p[i] = i;
int res = 0, cnt = 0;
for (int i = 0;i < m;i++) {
int a = edges[i].a, b = edges[i].b, w = edges[i].w;
a = find(a), b = find(b);
if (a != b) {
p[a] = b;
res += w;
cnt++;
}
}
if (cnt < n - 1) cout << "impossible";
else cout << res;
}