Acwing_887(求组合数Ⅲ)

本文介绍了卢卡斯定理在计算组合数中的应用,特别是在模素数情况下的高效算法,包括C函数和qmi函数的实现以及递归函数lucas的定义,通过示例展示了如何在AcWing题库中解决求组合数的问题。
摘要由CSDN通过智能技术生成

原题链接:

887. 求组合数 III - AcWing题库

题解:

卢卡斯定理(Lucas' Theorem)是一种用于计算组合数(组合数也称为二项系数)的定理,它在模素数的情况下特别有用。该定理说明了如何将大的组合数分解成小的组合数,从而在求解组合数时可以更高效地利用模运算。

详细推导证明过程参见:AcWing 887. 求组合数 III(lucas定理) - AcWing 

代码:

#include<bits/stdc++.h>
using namespace std;
using LL = long long;

int qmi(int a, int k, int p)
{
	int res = 1;
	while (k)
	{
		if (k & 1)res = (LL)res * a % p;
		a = (LL)a * a % p;
		k >>= 1;
	}
	return res;
}

int C(int a, int b, int p)//自变量类型int
{
	if (b > a)return 0;//漏了边界条件
	int res = 1;
	// a!/(b!(a-b)!) = (a-b+1)*...*a / b! 分子有b项
	for (int i = 1, j = a;i <= b;i++, j--)//i<=b而不是<
	{
		res = (LL)res * j % p;
		res = (LL)res * qmi(i, p - 2, p) % p;
	}
	return res;
}
//对公式敲
int lucas(LL a, LL b, int p)
{
	if (a < p && b < p)return C(a, b, p);//lucas递归终点是C_{bk}^{ak}
	return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;//a%p后肯定是<p的,所以可以用C(),但a/p后不一定<p 所以用lucas继续递归
}

int main()
{
	int n;
	cin >> n;
	while (n--)
	{
		LL a, b;
		int p;
		cin >> a >> b >> p;
		cout << lucas(a, b, p) << endl;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值