羧酸的还原反应,从酸到醇的化学路径

醋酸等生活中常见的羧酸由于具有酸味,因此命名为“酸”。羧酸与醇反应可生成羧酸酯,酯是脂肪的主要官能团,因此将该类物质命名为“酯”。羧酸与羧酸酯的主要官能团较相似,两者可相互转化。羧酸最为重要的反应为酯化反应,其酸性也是重要的性质。羧酸除了酯化反应,其他主要发生的反应有还原反应、脱水等。

羧酸能通过醛的氧化反应制取,因此羧酸在专门的还原剂或一定条件下能被还原为醛,甚至直接还原为醇。

羧酸的活性相比羧酸酯来说会差很多,是一种较难还原的物质。羧酸很难被H2直接还原为醛,通常需使用LAIH4、BH3,等含有较多显负化合价的H 原子的还原剂。

图1.羧酸以及衍生物还原反应总览

一、通过氢化铝锂还原羧酸得到醇

具体过程是第一步是将羧酸还原为醛。首先羧酸转变成羧酸锂盐,然后氢化铝与羧酸锂盐接近,与羰基氧形成配合物,再将负氢从铝转移到羰基碳上,接着消除LiOAlH2形成醛。第二步,生成的醛与第二分子氢化铝锂反应,然后用稀酸水解得到一级醇。氢化铝锂还原羧酸比较彻底,用量加足基本不会停止在醛的阶段。即使位阻较大的酸,也有较好的收率。

值得注意的是,氢化铝锂还原羧酸时,通常使用无水乙醚或四氢呋喃作为溶剂。反应过程中,虽然经过醛的中间阶段,但由于醛比酸更易被还原,所以无法得到醛的中间产物。氢化铝锂不能还原孤立的碳碳双键,其还原选择性较差,会同时还原羧基和其他官能团。由于羧基的活性较低,在低温下还原速度慢,有时甚至不发生反应,因此通常不通过降低温度来避免还原其他基团。

二、通过硼烷还原羧酸得到醇

硼烷是一种为强亲电性还原剂,在和羰基的反应中首先是羰基氧上的孤电子对缺电子的硼结合然后硼原子的氢,以负氢离子形式转移到羰基碳原子上而使羧酸还原成醇。这个反应的关键在于硼烷与氧的配位,因此,羰基氧的碱性越强,反应越易进行。

硼烷还原羧酸的速度依次为脂肪酸 > 芳香酸,位阻小的羧酸 > 位阻大的羧酸,且对羧酸盐无法还原。硼烷还原脂肪酸酯较慢,对芳香酸酯几乎不起作用,原因是芳环和羰基的共轭效应降低了羰基的电子密度,减少了硼烷的亲电进攻。

三、通过醇硼烷将羧酸直接还原为醛

想要将羧酸直接还原为醛,往往要控制好条件,避免过度还原。也可以通过原位活化羧酸为酰氯或Weinreb酰胺,再还原为醛基也是比较实用的方法。

中科院兰州化学物理研究所刘超教授团队联合武汉大学戚孝天教授团队报道了一步将羧酸还原为醛的方法。在三氟甲磺酰基吡啶鎓盐促进下,室温下利用频哪醇硼烷快速可控的还原羧酸到醛。他们开创性的利用三氟甲磺酰基吡啶鎓盐将羧酸转化为酰基吡啶中间体,利用频哪醇硼烷将酰基吡啶中间体还原为醛。该方法具有条件温和、操作简便、底物范围广的优势并且可以不破坏手性结构。(登录摩熵化学下载原文10.1002/anie.202215168)

该反应体系可以用于合成氘代醛,以及进行克级规模的羧酸还原为醛的制备。此外,该反应体系还可应用于流体化学体系。

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这类报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值