在化学研究过程中,获取化合物的光谱表征数据(如 Raman、IR、MS 及 H/C NMR 等)是常规需求。我们可以通过文献检索来获取,但耗时较长的局限性可能影响研究效率。工欲善其事,必先利其器。对于研发人员来说,快速查阅有关信息对整个研发过程有很大的帮助,这里小编给大家梳理了一些国内外常见的光谱数据库供大家使用,以帮助大家快速获取化合物的红外光谱(IR)、核磁共振光谱(NMR)、质谱(MS)等。
1.NIST Chemistry WebBook
NIST Chemistry WebBook是美国国家标准与技术研究院(NIST)提供的一个在线数据库,它整合了大量化学物质的光谱数据及其他相关信息。其光谱数据涵盖了多种光谱类型,包括红外光谱(IR)、质谱(Mass)、紫外-可见光谱(UV/Vis)、气相色谱数据等,为化学研究和分析提供了丰富的资源。并且还可查询物质的热化学性质、物理性质等。其中包含16000+物质IR谱图,33000+质谱,27000+气相色谱。可通过化合物名称、分子式、inchi、cas等字段进行检索,可选择想要的数据类型(如IR、质谱、气相热化学数据等)。
网址:https://webbook.nist.gov/
优点:
-数据权威性与全面性:数据库由NIST主导开发,数据经过严格审核,具有高度可信度。
-动态更新与扩展:数据库定期更新,例如2023年新增了振动光谱和热力学数据,并优化了化学结构的可视化功能。
缺点:
-部分数据覆盖范围有限:虽然数据量庞大,但对于一些特殊或非常见的化合物,其光谱数据可能仍然缺失,无法满足所有用户的需求。
-用户界面不够友好:对于初次使用的用户来说,其界面和操作可能稍显复杂,需要一定时间来熟悉和掌握各种检索和数据处理功能。
2.摩熵化学MolAid
摩熵化学提供了超过20万张真实实验图谱,包括NMR碳谱、氢谱,红外光谱(IR)、质谱(MS)和拉曼光谱(Raman),为化学结构的分析提供了多角度的参考,谱图数据支持可视化操作,用户可以通过悬停交互来查看具体的峰位数据,这种直观的展示方式使得数据分析更为便捷和准确。MolAid还支持谱图的反向检索功能,我们可以通过输入化学位移等关键数据来查询可能的化合物结构。这一功能特别有助于解析复杂的化学结构,使得研究者能够更加轻松地进行化合物的鉴定和结构解析。还可以一键下载谱图中的峰位数据,这极大地方便了数据的进一步处理和作图。
网址:https://chem.molaid.com/home
优点:
-数据全面且来源可靠:数据库整合20万条真实实验谱图,覆盖常见有机化合物及药物分子,部分谱图来源可追溯至高质量期刊和专利。
-智能化谱图预测与分析:新增的谱图预测功能支持基于结构式生成氢谱和碳谱预测结果,并结合事实文献核磁数据提升准确性。用户可一键导出预测图谱,便于论文作图或实验对照。
-多场景适用性:数据库不仅服务于结构解析,还集成晶体信息、反应条件、安全数据等,支持从谱图分析到合成设计的全流程需求。例如,通过谱图反向查询可快速锁定候选化合物,结合反应数据库设计合成路线。
缺点:
-数据解读需要专业知识:光谱数据的专业性较强,用户在解读和分析这些数据时,需要具备相应的化学知识和光谱分析技能。
-领域偏向性:聚焦有机与药物化学,无机 / 金属有机光谱覆盖率较低。
3. 化学物质基础数据库
国家基础学科公共科学数据中心化学化工科学分中心、中国科学院化学化工科学数据中心的核心数据资源,由中国科学院过程工程研究所联合上海有机化学研究所和长春应用化学研究所在40余年化学化工数据积累的基础上进行建设,是目前国内规模最大、稳定在线服务的化学化工基础科学数据系统。形成了针对我国化学化工数据应用特点的化学数据库群,汇聚了中国科学院化学学科领域80%以上的基础数据资源。可通过分子式、物质名称、cas等进行检索,提供质谱数据。其质谱数据功能聚焦于提供化合物质谱图谱及关联分析,覆盖有机小分子、天然产物、药物中间体等类别的化合物,数据主要来源于国内科研机构实验测定、中文期刊文献及部分公开数据库的标准化整理。
网址:http://www.chemdb.csdb.cn/chemdb/home
优点:
-数据可靠性高:数据库依托中国科学院等权威机构,数据来源可靠且经过严格评估,确保了质谱数据的准确性和可信度。
-本土化数据资源丰富:数据库重点整合国内研究成果,尤其在中药成分、传统有机化合物及特色材料领域的数据覆盖较全面,部分数据为其他国际数据库中未收录的独家资源。
缺点:
-检索精度与国际化不足:部分化合物仅标注中文名称或拼音,英文术语匹配存在误差,国际用户使用体验较差。高级检索条件(如质量数范围筛选)功能缺失,难以精准定位目标数据。
-技术兼容性问题:网站界面设计较为陈旧,未适配移动端访问,部分浏览器兼容性不佳。
4. MassBank
MassBank 是由日本、欧洲、北美等多国科研机构联合维护的全球性开放质谱数据库,专门提供质谱(MS)数据。用户可以免费搜索和下载大量的质谱信息。可通过基础的物质名称、分子量、峰位数据等进行检索。数据由全球数百个实验室提交并经标准化验证,支持精确质量数检索、碎片离子匹配及多数据库交叉比对,广泛应用于代谢组学、环境毒理及食品安全研究领域。
网址:https://massbank.eu/MassBank/
优点:
-合并谱图merged spectra:人为地将来自于相同代谢物但是不同碰撞能量或者不同的碎裂方式的碎片离子合并为一张质谱图。
缺点:
-谱图质量不佳:可能在于数据库中所有的记录并未经过充分的筛选,有些条目对应的信息较差或者存在错误注释的情况,有一些谱图也包含了噪音信号或者提取的效果并不是很好。
-用户界面交互性不足:检索界面设计较传统,缺乏实时可视化交互(如动态峰位标注),高级功能(如机器学习驱动的谱图预测)尚未集成。
5. PubChem
PubChem 是由美国国立卫生研究院(NIH)提供的一个开放化学数据库,包含丰富的化合物数据(322m物质),部分化合物也附带了光谱数据。可通过物质名、分子式、cas号、inchi等字段进行检索,也可直接绘制结构进行检索,谱图信息多样化,包括NMR,Mass,UV,IR等。
网址:https://pubchem.ncbi.nlm.nih.gov/
优点:
-数据规模与多样性:PubChem收录超过1.19亿化合物结构信息(Compound子库)和3.28亿物质记录(Substance子库),涵盖小分子、天然产物及药物分子,支持跨学科研究(如药物开发与毒理学)。
-标准化数据格式:提供SDF、JSON等标准化格式下载,兼容主流化学软件,便于结构可视化和数据二次分析。
缺点:
-交互功能受限:结构式检索界面较传统,缺乏动态谱图比对或预测功能(如摩熵化学MolAid的反向谱图查询)。
-更新与覆盖局限:新型材料、复杂天然产物的谱图数据更新较慢,部分实验参数(如碰撞能量、仪器型号)缺失,影响跨平台数据复现。
6. Metlin
Metlin 是一个代谢物数据库,于2003年创建、2005年开放,专注于非靶向代谢组学(Non-targeted Metabolomics)的代谢物鉴定与分析。其核心功能是提供高质量的二级质谱(MS/MS)图谱,这些数据来自多个QTOF质谱检测平台,包括SCIEX、Agilent、Bruker、Waters。覆盖超43.1万种小分子代谢物的高分辨率质谱数据,涵盖药物分子、天然产物、环境污染物等类别。 用户可以通过代谢物的名称、质谱特征等信息进行快速检索。
网址:https://metlin.scripps.edu
优点:
-海量且高分辨的MS/MS数据:数据库收录超过43.1万种化合物的高分辨率MS/MS图谱,涵盖多种碰撞能量,可以清晰的找到代谢物的碎片离子。
-化学信息全面:提供分子量、化学式、结构式等基础信息,部分化合物关联文献来源,便于交叉验证数据可靠性。
缺点:
-缺乏代谢通路与生物信息:未整合代谢通路、生物体内浓度、临床相关性等信息,需结合HMDB或KEGG等数据库补充生物学背景。
-无预测功能:与摩熵化学MolAid等数据库相比,未提供基于结构式的谱图预测功能。
7. GNPS (Global Natural Products Social Molecular Networking)
该数据库专注于支持天然产物研究人员分析和共享质谱数据。数据库整合了来自全球科研机构的实验质谱数据,覆盖微生物次生代谢物、植物天然产物、环境代谢物等类别。 分子网络的方式将质谱数据中的相似性可视化,帮助科学家识别和注释复杂的天然产物混合物, 提供多种工具和算法,如数据预处理、峰值检测、特征提取等,以支持深入的质谱数据分析。
网址:https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
优点:
-分子网络分析独特功能:平台内置的Molecular Networking功能能够自动创建分子网络,直观地展示化合物间的关系,大大简化了复杂的代谢组学数据分析过程。
-开放分享:GNPS支持实时协作和教学模式 ,允许研究人员在全球范围内分享和讨论分析结果,促进了科学知识的传播和交流。
缺点:
-学习曲线陡峭:分子网络构建与解读需要较强的质谱解析和生物信息学背景,对新手用户存在较高技术门槛。
8. BMRB (Biological Magnetic Resonance Data Bank)
BMRB提供了生物分子的 NMR 数据,用户可以搜索和获取蛋白质、核酸等大分子的 NMR 光谱。对于药物设计、蛋白质工程以及基础的生物分子研究都具有重要价值 。可通过基础的化合物名称,分子式、并筛选溶剂等方式进行检索。
网址:https://bmrb.io/
优点:
-检索方式多样:支持化合物名称,分子式、并筛选溶剂等方式进行检索。
缺点:
-数据覆盖局限性:数据库以蛋白质和核酸为主,对小分子代谢物、多糖等生物分子的NMR数据收录较少。