(转)Autonomous_Vehicle_Paper_Reading_List

Autonomous_Vehicle_Paper_Reading_List 

2018-07-19 10:40:08 

 

Referencehttps://github.com/ZRZheng/Autonomous_Vehicle_Paper_Reading_List

A collection of papers focus on self-driving car. Many topics are covered including system architecture,computer vison, sensor fusion,planning&control and SLAM. The paper list will be timely updated. 

 

 

 

System architecture

  • Junior: The Stanford Entry in the Urban Challenge [pdf]
  • Towards Fully Autonomous Driving: Systems and Algorithms [pdf]
  • Autonomous Driving in Urban Environments: Boss and the Urban Challenge [pdf]
  • A Perception-Driven Autonomous Urban Vehicle [pdf]
  • Making Bertha Drive—An Autonomous Journey on a Historic Route [pdf]
  • Towards Full Automated Drive in Urban Environments:A Demonstration in GoMentum Station, California [pdf]

Computer vision

  • Computer Vision for Autonomous Vehicles:Problems, Datasets and State-of-the-Art [pdf]
  • Video Scene Parsing with Predictive Feature Learning[pdf]
  • Unsupervised Monocular Depth Estimation with Left-Right Consistency [pdf]
  • Learning a Driving Simulator [pdf]
  • Deep Tracking:Seeing Beyond Seeing Using Recurrent Neural Networks [pdf]
  • End-to-End Tracking and Semantic Segmentation Using Recurrent Neural Networks [pdf]
  • Deep Tracking on the Move: Learning to Track the World from a Moving Vehicle using Recurrent Neural Networks [pdf]
  • Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image    [pdf]
  • 3D Object Proposals using Stereo Imagery for Accurate Object Class Detection [pdf]
  • On the Sample Complexity of End-to-end Training vs. Semantic Abstraction Training [pdf]
  • End to End Learning for Self-Driving Cars [pdf]
  • Explaining How a Deep Neural Network Trained with End-to-End Learning Steers a Car [pdf]
  • DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving [pdf]
  • End-to-end Learning of Driving Models from Large-scale Video Datasets [pdf]
  • Fully Convolutional Networks for Semantic Segmentation [pdf]
  • SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[pdf]
  • Feature Pyramid Networks for Object Detection[pdf]
  • Mask R-CNN [pdf]
  • Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[pdf]
  • Fast R-CNN [pdf]
  • You Only Look Once:Unified, Real-Time Object Detection [pdf]
  • YOLO9000: Better,Faster, Stronger  [pdf]
  • SSD: Single Shot MultiBox Detector [pdf]
  • R-FCN: Object Detection via Region-based Fully Convolutional Networks [pdf]
  • Predicting Deeper into the Future of Semantic Segmentation [pdf]
  • Geometry-Based Next Frame Prediction from Monocular Video [pdf]
  • Long-term Recurrent Convolutional Networks for Visual Recognition and Description [pdf]
  • MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving [pdf]
  • Beyond Skip Connections: Top-Down Modulation for Object Detection [pdf]
  • Traffic Sign Recognition with Multi-Scale Convolutional Networks [pdf]
  • Can we unify monocular detectors for autonomous driving by using the pixel-wise semantic segmentation of CNNs? [pdf]
  • Pyramid Scene Parsing Network  [pdf]
  • Brain Inspired Cognitive Model with Attention for Self-Driving Cars [pdf]
  • Image-to-Image Translation with Conditional Adversarial Networks [pdf]
  • Unsupervised Image-to-Image Translation Networks [pdf]
  • A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection[pdf]
  • Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers [pdf]
  • Multi-Class Multi-Object Tracking using Changing Point Detection[pdf]
  • Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection[pdf]
  • Overview of Environment Perception for Intelligent Vehicles[pdf]
  • An Empirical Evaluation of Deep Learning on Highway Driving [pdf]
  • Histograms of Oriented Gradients for Human Detection [pdf]

Sensor fusion

  • LIDAR-based Driving Path Generation Using Fully Convolutional Neural Networks [pdf]
  • A vision-centered multi-sensor fusing approach to self-localization and obstacle perception for robotic cars [pdf]
  • Brain4Cars: Car That Knows Before You Do via Sensory-Fusion Deep Learning Architecture [pdf]
  • Multi-View 3D Object Detection Network for Autonomous Driving [pdf]
  • VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem [pdf]
  • Vehicle Detection from 3D Lidar Using Fully Convolutional Network[pdf]
  • Detecting Drivable Area for Self-driving Cars:An Unsupervised Approach [pdf]

Motion planning & Reinforcement learning

  • A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles[pdf]
  • A Review of Motion Planning Techniques for Automated Vehicles [pdf]
  • Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions [pdf]
  • A survey on motion prediction and risk assessment for intelligent vehicles [pdf]
  • End-to-End Deep Reinforcement Learning for Lane Keeping Assist [pdf]
  • Deep Reinforcement Learning framework for Autonomous Driving [pdf]
  • Continuous control with deep reinforcement learning [pdf]
  • Learning to Drive using Inverse Reinforcement Learning and Deep Q-Networks [pdf]
  • Long-term Planning by Short-term Prediction [pdf]
  • Safe,Multi-Agent, Reinforcement Learning for Autonomous Driving [pdf]
  • Large-scale cost function learning for path planning using deep inverse reinforcement learning [pdf]
  • Human-like Planning of Swerve Maneuvers for Autonomous Vehicles [pdf]
  • Virtual to Real Reinforcement Learning for Autonomous Driving [pdf]
  • Learning End-to-end Multimodal Sensor Policies for Autonomous Navigation [pdf]
  • A Fast Integrated Planning and Control Framework for Autonomous Driving via Imitation Learning [pdf]
  • Navigating Intersections with Autonomous Vehicles using Deep Reinforcement Learning [pdf]
  • Characterizing Driving Styles with Deep Learning [pdf]
  • Learning Where to Attend Like a Human Driver [pdf]
  • Probabilistic Vehicle Trajectory Prediction over Occupancy Grid Map via Recurrent Neural Network [pdf]

SLAM

  • Past, Present, and Future of Simultaneous ocalization and Mapping: Toward theRobust-PerceptionAge [pdf]
  • Learning from Maps: Visual Common Sense for Autonomous Driving [pdf]
  • A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles [pdf]
  • Image-based localization using LSTMs for structured feature correlation [pdf]
  • PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[pdf]

转载于:https://www.cnblogs.com/wangxiaocvpr/p/9334444.html

<think>好的,用户现在要了解Oracle的PRAGMA AUTONOMOUS_TRANSACTION。我需要先回顾一下这个知识点的基本内容,确保自己理解正确。 首先,PRAGMA AUTONOMOUS_TRANSACTION是Oracle中用来声明自治事务的编译指令。自治事务的主要特点是独立于主事务,可以单独提交或回滚,不影响主事务的状态。这在某些特定场景下非常有用,比如需要在触发器中执行DML操作并提交,而不影响主事务的提交或回滚。 用户可能是一位开发人员或者DBA,他们在实际开发中遇到了需要独立事务的情况,比如日志记录。这时候使用自治事务可以避免主事务的锁竞争或者保持日志的独立性。需要确定用户的使用场景,才能给出更具体的建议。 接下来要组织回答的结构,先解释基本概念,然后说明工作原理,接着是使用场景,最后给出示例代码。这样用户能逐步理解。同时要提醒注意事项,比如自治事务的隔离性、资源占用和DDL限制,避免用户误用。 可能用户在使用触发器或存储过程时遇到了事务处理的问题,比如在触发器中无法提交导致主事务被影响,这时候自治事务就派上用场。需要确保用户明白自治事务和主事务的独立性,提交自治事务不会影响主事务的状态。 另外,要检查示例代码是否正确,特别是PRAGMA的位置,必须是在存储过程、函数或触发器的声明部分。比如在存储过程中使用AUTONOMOUS_TRANSACTION,确保代码示例准确无误。 用户可能的深层需求是希望了解如何在Oracle中处理需要独立提交的事务,避免事务之间的相互影响。因此,除了基本介绍,还需要强调适用场景和注意事项,帮助他们正确应用。 最后,总结自治事务的优缺点,帮助用户权衡是否在特定情况下使用。比如虽然自治事务提供了独立性,但过度使用可能增加复杂性和资源消耗,需要合理评估。</think>在 Oracle 数据库中,`PRAGMA AUTONOMOUS_TRANSACTION` 是一个编译指令(编译指示),用于声明一个**自治事务**(Autonomous Transaction)。自治事务是一个独立于主事务的子事务,允许在代码块(如存储过程、函数、触发器等)中执行独立的数据库操作(提交或回滚),而不会影响主事务的状态。 --- ### **核心概念** 1. **自治事务的特性**: - **独立性**:自治事务与主事务完全隔离。即使主事务回滚,自治事务的提交操作仍然有效,反之亦然。 - **提交/回滚自主性**:自治事务必须显式提交(`COMMIT`)或回滚(`ROLLBACK`),否则会引发错误。 - **用途**:常用于日志记录、审计、错误处理等场景,需保证某些操作不受主事务结果的影响。 2. **语法**: 在声明存储过程、函数、触发器或匿名块时,添加以下指令: ```sql PRAGMA AUTONOMOUS_TRANSACTION; ``` --- ### **工作原理** - **主事务**和**自治事务**各自维护独立的事务上下文。 - 自治事务的提交仅影响自身操作,主事务的提交或回滚对自治事务无影响。 ![自治事务示意图](https://img-blog.csdnimg.cn/20201202145717657.png) --- ### **使用场景** 1. **触发器中的独立操作** 例如:在触发器中记录日志,即使主事务回滚,日志仍需保留。 ```sql CREATE OR REPLACE TRIGGER log_audit_trigger AFTER INSERT ON employees FOR EACH ROW DECLARE PRAGMA AUTONOMOUS_TRANSACTION; BEGIN INSERT INTO audit_log (action, timestamp) VALUES ('New employee added', SYSTIMESTAMP); COMMIT; -- 必须显式提交 END; ``` 2. **存储过程/函数中的独立事务** 例如:在存储过程中记录错误信息,不受主事务结果影响。 ```sql CREATE OR REPLACE PROCEDURE log_error (p_message VARCHAR2) AS PRAGMA AUTONOMOUS_TRANSACTION; BEGIN INSERT INTO error_log (message, log_time) VALUES (p_message, SYSTIMESTAMP); COMMIT; -- 显式提交 END; ``` 3. **递归调用中的事务控制** 避免主事务与嵌套事务之间的锁冲突。 --- ### **注意事项** 1. **显式提交/回滚** 自治事务必须包含 `COMMIT` 或 `ROLLBACK`,否则会报错:`ORA-06519: 检测到活动自治事务,已回退`。 2. **资源隔离性** 自治事务无法直接访问主事务的未提交数据(如未提交的 DML 变更),因为它们在独立的事务上下文中运行。 3. **DDL 操作限制** 在自治事务中执行 DDL(如 `CREATE TABLE`)会隐式提交,可能影响事务逻辑。 4. **性能影响** 频繁创建自治事务会增加数据库资源开销,需合理评估使用场景。 --- ### **示例代码** ```sql -- 自治事务的存储过程示例 CREATE OR REPLACE PROCEDURE autonomous_demo AS PRAGMA AUTONOMOUS_TRANSACTION; BEGIN INSERT INTO test_table (id, name) VALUES (1, 'Autonomous Data'); COMMIT; -- 必须显式提交 END; / -- 主事务中调用自治事务 BEGIN INSERT INTO test_table (id, name) VALUES (2, 'Main Data'); autonomous_demo(); -- 自治事务提交,主事务未提交 ROLLBACK; -- 主事务回滚,但自治事务的数据仍保留 END; ``` --- ### **总结** `PRAGMA AUTONOMOUS_TRANSACTION` 是 Oracle 中实现事务隔离的强有力工具,适用于需独立提交的子操作场景。合理使用可提升灵活性和可靠性,但需注意事务边界和资源管理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值