3D经验技巧

3D经验技巧
首先形态上面:
如果判断组三组六
如果准确判断半顺组六还是杂六
组六:
组六共计120注
半顺组六六56注
杂六56注
顺子8注
组三90注
解释一下什么是半顺组六:
出现2连码的号码称之为半顺组六,例如出现01 12 23 34 45 5667 78 89这样的组合叫做半顺组六
(提示09组合不叫作半顺组六)例如235 这个就是半顺组六,因为23半顺
除开半顺组六和顺子其他就是杂六
例如259属于杂六再例如059属于9跨的杂六
怎么判断形态:
个人经验常常是当百位或者个位出现0或者9三期以内容易开出组三(通常断路不出组三)
其次就是某一些特定组合容易开出组三,例如:26组合
再次就是上期出现全单下期可能组三
其他就是一些一些经验,比如一些类似走势或者其他规律码组三,这个结合走势看可以看得出来。
那么通常我们会依组六为主打形态,怎么分清楚杂六还是半顺呢,这一点个人是依和差来判断
附:
和差:开奖号码任意2个数字之和或者之差称之为和差
和:就是开奖号码任意2个数字之和
差:反之亦然
012路:
0路0369
1路147
2路258
-------------以上是形态方面------------------
再说一下胆码:
我们选号要选对胆码,如果说要什么独胆公式是没有的,最好选择一些胆组。那么个人有一些算胆组的方法供大家参考:
依上期开奖号码为基础,然后进行①补0-②和9③对码④和0(这里可以三胆下一)⑤减一(这里比较准确的三胆下一)
大家不明白上面的意思,我后来总结出来一套简单的方法,其实就是上期开奖号码+5然后}和0
例如:原始方法:031期开195先进行补0就是915然后和9就是084然后再和0就是026再对码571(这里可以作为三胆下一)
最后减一得出460这里三胆下1
简单一点方法:159+5=604然后和0就是406对吧-那么下期406=12 我们再加1可以作为另外三胆下一406+1=517那么这里157=12
下期开奖号码124
406下了一个4-157下了一个1,明白了嘛?
个人方法仅供参考!
附:对码
0-5
1-6
2-7
3-8
4-9
其实很简单就是差5就是对码,呵呵 这个不难理解。
-------------以上是胆码-----------------
再次如果定好跨度,简单谈一下
我相信大家都听过振幅吧,这个可以去参考一下,另外一个就是杀跨法。
说一些杀跨的方法:
①:上期开奖号码个位杀下期跨度
②:上期开奖号码合值杀下期跨度
③:上期开奖号码合值+跨度=取尾杀下期跨度
④:上期试机号跨度杀下期跨度
⑤:当期试机号杀当期跨度
⑥:上期开奖号码任意对应12345相加取尾杀下期跨度(这里解释一下,比如05 16 27 38 49 我们可以看做作05=1 16=2 27=3 38=4 49=6,
举例:052期开355那么3-8看成=4,5看成05=1那么就是1+1+4=6所以053期开663跨3√)
附:
跨度=开奖号码最大号-最小号
合值=和值尾
和值=开奖号码3个数字之和
---------------------------以上是跨度-----------------------

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值