《Blockchain-Enabled Federated Learning-Based Resource Allocation and Trading for Network Slicing in 5G》基于区块链的联合学习的5G网络切片资源分配和交易
期刊:IEEE/ACM TRANSACTIONS ON NETWORKING
作者:Daniel Ayepah-Mensah , Guolin Sun , Member, IEEE, Gordon Owusu Boateng , Member, IEEE,Stephen Anokye , and Guisong Liu
时间:2023.8.2
问题:①切片租户可能会在获得更大效用所需的资源上撒谎。这种行为可能导致由于说谎租户获得的过多资源而导致的资源利用率差,以及由于切片租户选择不购买高价资源以保存成本而导致的资源短缺。②在具有许多切片租户的场景中,集中式控制器可能会被请求的数量淹没。这反过来会导致更慢的响应时间和更高的延迟,从而导致切片租户的资源利用率差。
解决问题:本文提出了一种对等(P2P)的资源交易的方法,其中切片租户直接通信,而不是依赖于集中式编排器。此外,通过集成区块链技术和联合深度强化学习,提出了一个去中心化的资源交易框架,使网络租户能够安全地执行切片间的资源共享。
创新点:提出了一种新的基于区块链的去中心化网络切片框架,该框架能够在多个租户之间进行自主资源交易和分配。
系统模型:
MEC多路访问边缘计算
SLA服务水平协议:指IT服务提供商和客户之间就服务提供中关键的服务目标及双方的责任等有关细节问题而签订的协议。
SCs:以SIEMENS PLC为基础的可编程序控制器构成的专用控制系统,它被用于构建高度可扩展的基于事件驱动的微服务,并且能提供一套灵活可扩展的编程模型。
- 物理网络基础设施被划分为针对不同移动服务请求定制的虚拟切片。
- 通过使用联邦学习(FL),这些切片可以协作,根据每个切片的分配技术动态调整资源价格。
- 集成的MEC服务器允许切片执行广泛的计算和区块链操作。通过利用区块链,网络切片之间的RAN共享实现了自动化,并建立了资源交易的SLA。
- Slice切片租户可以根据交易消息,通过预编程的SC自主触发资源分配和交易流程。因此,该方法用区块链网络取代了InP在资源共享中的作用,并引入了一种新颖的P2P交易市场方法来协调网络切片中的资源共享。
《IoMT: A Medical Resource Management System using Edge Empowered Blockchain Federated Learning》IoMT:一个使用边缘授权区块链联合学习的医疗资源管理系统
期刊:IEEE
作者:Tasiu Muazu, Mao Yingchi, Abdullahi Uwaisu Muhammad, Muhammad Ibrahim, Omaji Samuel, and Prayag Tiwari
时间:2023.8.24
问题:随着医疗物联网(IoMT)上的数据共享变得越来越复杂,利益分歧、不受监管的政策、隐私和安全以及数据所有者的资源限制等问题。
解决问题:本文使用提出的边缘授权区块链联邦学习系统在IoMT中提供资源管理。提出了一种改进的线性回归模型作为联邦学习系统的全局学习模型。
创新点:提出了一种改进的线性回归模型用于联邦服务器的全局训练,并采用区块链来确保数据的安全性和可信性。
《Data-aware Hierarchical Federated Learning via Task Offloading》基于任务分流的数据感知层次联邦学习
期刊:2022 IEEE Global Communications Conference
作者:Mulei Ma, Liantao Wu , Wenxiang Liu, Nanxi Chen, Ziyu Shao, and Yang Yang。上海理工大学信息科学与技术学院、中国科学院上海微系统与信息技术研究所、中国科学院大学电子科学与技术学院、国防科技大学
时间:2022.12.4-8
问题:为了科普在多访问边缘计算(MEC)场景中由联邦学习(FL)的频繁聚合引起的高通信开销,提出了分层联邦边缘学习(HFEL)作为演进框架。HFEL将任务卸载到边缘服务器进行部分模型聚合,以减少网络流量。然而,现有的研究大多集中在资源优化HFEL没有考虑的数据特性的影响,不能保证FL训练的质量。
解决问题:本文提出了一种基于数据和资源异构性的任务卸载方法在HFEL下,以提高训练性能,降低系统成本。具体来说,我们利用信息熵将数据统计特征纳入成本函数,以重塑边缘数据集。此外,应用多代理深度确定性策略梯度(MADDPG)与资源分配模块,以更有效地产生分布式卸载策略。
创新点:算法不仅采用局部观测来获得最优的行动,也考虑到设备的异构性,它可以适应不稳定的边缘环境。
系统模型介绍:
- Multi-access Edge Computing (MEC)多路访问边缘计算
- Edge Servers (ES)边缘服务器
- Edge Parameter Server (EPS)边缘参数服务器
- Hierarchical Federated Edge Learning (HFEL) 分层联邦边缘学习
- Cloud Parameter Server (CPS)云参数服务器
在系统边缘,有大量分散的用户原始数据(任务)需要处理和分析。由于用户设备(UD)的性能有限,需要将用户任务卸载到附近的边缘服务器进行处理。如图所示,在MEC场景下,多用户、多ES可以实现负载均衡,支持各种应用服务。对于一般的机器学习服务,用户任务被卸载到边缘以进行分布式模型训练。作为传统云联合学习的高级步骤,HFEL可以减少全局参数聚集的数量,节省昂贵的核心网络通信资源。在HFEL框架中,ES训练的参数在边缘参数服务器(EPS)和云参数服务器(CPS)中进行两次聚合,即ESs到EPS之间的边缘聚合,EPS到CPS之间的云聚合。数据集的质量对聚合后模型的精度有很大的影响。
《Resource Optimization for Blockchain-based Federated Learning in Mobile Edge Computing》移动的边缘计算中基于区块链的联邦学习资源优化
期刊:arXiv
作者:Zhilin Wang, Qin Hu, Zehui Xiong
时间:2022.6.5
问题:随着移动的边缘计算(MEC)和基于区块链的联邦学习(BCFL)的发展,许多研究建议在边缘服务器上部署BCFL。在这种情况下,资源有限的边缘服务器需要以具有成本效益的方式为移动的设备提供卸载任务,并为BCFL系统提供模型训练和区块链共识,而不会牺牲任何一方的服务质量。
解决问题:本文提出了一种边缘服务器资源分配方案,旨在以最小的代价提供最优的服务。具体而言,我们首先分析MEC和BCFL任务所消耗的能量,然后使用每个任务的完成时间作为服务质量约束。然后,我们将资源分配挑战建模为多变量,多约束和凸优化问题。为了逐步解决这个问题,设计了两个均匀和非均匀情况下基于交替方向乘法器(ADMM)的算法,分别采用平等和按需资源分配策略。
创新点:将成本定义为边缘服务器在完成MEC和BCFL任务时消耗的总能量,然后使用相应的时间要求作为边缘服务器提供的服务质量的约束。我们可以将资源分配问题转化为一个多变量、多约束的凸优化问题。
系统模型介绍:
本地设备通常缺乏资源,因此可能会选择将计算任务卸载到附近的边缘服务器。这样,边缘服务器就可以提供必要的资源来帮助本地设备完成MEC场景中的卸载任务。同时,有多台边缘服务器通过区块链网络连接起来,进行联邦学习,形成基于区块链的联邦学习服务提供者。也就是说,边缘服务器不仅将负责为本地设备提供计算服务,同时还负责维护BCFL系统。
《Incentive Mechanism Design for Joint Resource Allocation in Blockchain-based Federated Learning》基于区块链的联邦学习联合资源分配激励机制设计
期刊:arXiv
作者:Zhilin Wang, Qin Hu, Ruinian Li, Minghui Xu, and Zehui Xiong
时间:2022.2.18
问题:基于区块链的联邦学习(BCFL)最近因其去中心化和原始数据隐私保护等优点而受到极大关注。然而,一直以来,很少有研究集中在BCFL的客户资源配置。在BCFL框架中,FL客户端和区块链矿工是相同的设备,客户端将训练好的模型更新广播到区块链网络,然后执行挖掘以生成新的区块。由于每个客户端具有有限的计算资源量,因此需要仔细解决将计算资源分配到训练和挖掘中的问题。
解决问题:在本文中,设计了一个激励机制,分配给每个客户端适当的奖励的训练和挖掘,然后客户端将确定的计算能力分配给每个子任务的基础上,这些奖励使用两阶段的Stackelberg博弈。在分析模型所有者(MO)的效用之后(即,BCFL任务发布者)和客户端,将博弈模型转换为两个优化问题,依次求解以获得MO和客户端的最优策略。
创新点:将资源分配和激励机制相结合
系统模型介绍:
《Blockchain Assisted Federated Learning over Wireless Channels: Dynamic Resource Allocation and Client Scheduling》通过无线信道的区块链辅助联合学习:动态资源分配与客户端调度
期刊:arXiv
作者:Xiumei Deng, Jun Li, Chuan Ma, Kang Wei, Long Shi, Ming Ding, Wen Chen,
and H. Vincent Poor
时间:2022.10.31
问题:区块链技术已被广泛研究,以实现联邦学习(FL)中的分布式和防篡改数据处理。大多数现有的区块链辅助FL(BFL)框架都采用了第三方区块链网络来分散模型聚合过程。然而,去中心化模型聚合容易受到来自第三方区块链网络的池化和共谋攻击。
解决问题:在这个问题的驱动下,提出了一个新的BFL框架,该框架的特点是在客户端的训练和挖掘的集成。为了优化FL的学习性能,建议在LTA能量消耗的约束下,最大化的长期时间平均(LTA)训练数据的大小。为此,制定了训练客户端选择和资源分配的联合优化问题(即,客户端的发射功率和计算频率),并基于Lyapunov技术求解长期混合整数非线性规划。
创新点:提出了一种新的BFL框架,其特点是在客户端集成训练和挖掘。