Python程序设计——哈达玛矩阵的实现以及详解

 

 

import stdio
import stdarray
import sys
n = int(sys.argv[1])
a = stdarray.create2D(n, n, 0)
for i in range(n):
    for j in range(n):
        temp = i & j
        count = 0
        for k in range(8):
            count += (temp >> k) & 1
        if count % 2 == 0:
            a[i][j] = 1
        else:
            a[i][j] = 0
for i in range(n):
    for j in range(n):
        stdio.write(a[i][j])
        stdio.write(' ')
    stdio.writeln()

大家问的最多的,肯定是代码的思路了,想知道为什么吗?一起来看吧。

temp = i & j
count = 0
for k in range(8):
            count += (temp >> k) & 1
        if count % 2 == 0:
            a[i][j] = 1
        else:
            a[i][j] = 0

它是干啥的呢?

它的意思是,看temp的2进制形式里,有几个1,如果有偶数个1,那么a[i][j]=1;如果有奇数个1,那么a[i][j]=0。

为什么要用这个方法呢?

因为这个方法是我们看到了一个现象,猜测可能是这个结论,结果一验证果真如此,就很开心。

那你们看到了什么现象呢?

我们先观察,在

1  1

1  0

这个矩阵中,a[0][0]、a[0][1]、a[1][0]都是1,而a[1][1]是0。观察之后,发现:

0&0=0,0&1=0,1&0=0,1&1=1

这还不足以让我们产生灵感,所以我们就再观察:

1  1  1  1

1  0  1  0

1  1  0  0

1  0  0  1

原来a[1][1]位置的数,跑到了a[3][1],它的横坐标加了2,放十进制来看,确实不方便,但放二进制来看,就很一目了然了。为什么说它一目了然呢?因为横坐标从0001,变成了0011,但纵坐标没变,所以横纵坐标取并之后,a[3][1]还是1。

同样的道理,原来a[1][1]位置的数,也跑到了a[1][3],它的纵坐标加了2,放十进制来看,确实不方便,那就从二进制来看,纵坐标从0001,变成了0011,但横坐标没变,还是0001,所以横纵坐标取并,结果是0001,所以a[1][3]也还是1。

但如果横纵坐标都加了2呢?我们看,当a[1][1]跑到了a[3][3],横纵坐标均加了2之后,就变成了0,是巧合吗?我们再试一试:a[0][0]是1,a[2][2]是0;a[0][1]是1,a[2][3]是0......

从这个现象,我们猜测:如果i&j的二进制形式里,有奇数个1,那么a[i][j]就是0;而如果有偶数个1,那么a[i][j]就是1。

经过验证,发现果真如此!当我们验证发现完全正确时,说实话高兴坏了!!!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值