Qwen2-MOE-57B-A14B模型结构解读

Qwen2-MOE-57B-A14B模型结构解读

模型代码文件下载

该模型总的参数为57B,激活参数为14B,推理速度比32B的快,而且性能更好。

Qwen2-MOE-57B-A14B模型总体结构

<class 'transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForCausalLM'>
Qwen2MoeForCausalLM(
  (model): Qwen2MoeModel(
    (embed_tokens): Embedding(151936, 3584)
    (layers): ModuleList(
      (0-27): 28 x Qwen2MoeDecoderLayer(
        (self_attn): Qwen2MoeSdpaAttention(
          (q_proj): Linear(in_features=3584, out_features=3584, bias=True)
          (k_proj): Linear(in_features=3584, out_features=512, bias=True)
          (v_proj): Linear(in_features=3584, out_features=512, bias=True)
          (o_proj): Linear(in_features=3584, out_features=3584, bias=False)
          (rotary_emb): Qwen2MoeRotaryEmbedding()
        )
        (mlp): Qwen2MoeSparseMoeBlock(
          (gate): Linear(in_features=3584, out_features=64, bias=False)
          (experts): ModuleList(
            (0-63): 64 x Qwen2MoeMLP(
              (gate_proj): Linear(in_features=3584, out_features=2560, bias=False)
              (up_proj): Linear(in_features=3584, out_features=2560, bias=False)
              (down_proj): Linear(in_features=2560, out_features=3584, bias=False)
              (act_fn): SiLU()
            )
          )
          (shared_expert): Qwen2MoeMLP(
            (gate_proj): Linear(in_features=3584, out_features=20480, bias=False)
            (up_proj): Linear(in_features=3584, out_features=20480, bias=False)
            (down_proj): Linear(in_features=20480, out_features=3584, bias=False)
            (act_fn): SiLU()
          )
          (shared_expert_gate): Linear(in_features=3584, out_features=1, bias=False)
        )
        (input_layernorm): Qwen2MoeRMSNorm()
        (post_attention_layernorm): Qwen2MoeRMSNorm()
      )
    )
    (norm): Qwen2MoeRMSNorm()
  )
  (lm_head): Linear(in_features=3584, out_features=151936, bias=False)
)

Qwen2-MOE-57B-A14B模型详细结构(下面是从输入到输出的顺序输出的每层的参数量)

#输入的Embedding层
model.embed_tokens.weight: torch.Size([151936, 3584])
#主体的layer层,model.layers.0是第一层,共有28层
#下面是model.layers.0的attention层
model.layers.0.self_attn.q_proj.weight: torch.Size([3584, 3584])
model.layers.0.self_attn.q_proj.bias: torch.Size([3584])
model.layers.0.self_attn.k_proj.weight: torch.Size([512, 3584])
model.layers.0.self_attn.k_proj.bias: torch.Size([512])
model.layers.0.self_attn.v_proj.weight: torch.Size([512, 3584])
model.layers.0.self_attn.v_proj.bias: torch.Size([512])
model.layers.0.self_attn.o_proj.weight: torch.Size([3584, 3584])
model.layers.0.mlp.gate.weight: torch.Size([64, 3584])

#下面是model.layers.0的moe结构的mlp层
model.layers.0.mlp.experts.0.gate_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.0.up_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.0.down_proj.weight: torch.Size([3584, 2560])
model.layers.0.mlp.experts.1.gate_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.1.up_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.1.down_proj.weight: torch.Size([3584, 2560])
model.layers.0.mlp.experts.2.gate_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.2.up_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.2.down_proj.weight: torch.Size([3584, 2560])

...64个model.layers.0.mlp.experts层,这里省略model.layers.0.mlp.experts.3----model.layers.0.mlp.experts.62

model.layers.0.mlp.experts.63.gate_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.63.up_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.63.down_proj.weight: torch.Size([3584, 2560])

#下面是model.layers.0的shared moe结构的mlp层
model.layers.0.mlp.shared_expert.gate_proj.weight: torch.Size([20480, 3584])
model.layers.0.mlp.shared_expert.up_proj.weight: torch.Size([20480, 3584])
model.layers.0.mlp.shared_expert.down_proj.weight: torch.Size([3584, 20480])
model.layers.0.mlp.shared_expert_gate.weight: torch.Size([1, 3584])

#下面是是model.layers.0的Qwen2MoeRMSNorm层
model.layers.0.input_layernorm.weight: torch.Size([3584])
model.layers.0.post_attention_layernorm.weight: torch.Size([3584])

...这里省略model.layers.1---model.layers.27,它们的结构与model.layers.0一样

#下面是马上要输出前的归一化norm层
model.norm.weight: torch.Size([3584])

#下面是输出到最后的151936个token概率分布的mlp层
lm_head.weight: torch.Size([151936, 3584])
### Qwen1.5-MoE-A2.7B Model Information and Usage #### Overview of the Qwen1.5-MoE-A2.7B Model The Qwen1.5-MoE-A2.7B is a specialized variant within DeepSeek's suite of models, designed to leverage Mixture-of-Experts (MoE) architecture for enhanced performance on specific tasks while maintaining computational efficiency[^2]. This particular version integrates advanced techniques aimed at improving both speed and accuracy. #### Key Features - **Mixture-of-Experts Architecture**: Utilizes multiple expert networks that specialize in different aspects or domains of data processing. - **Scalability**: Optimized for deployment across various hardware configurations without significant loss in performance. - **Performance Optimization**: Incorporates optimizations similar to those found in other DeepSeek models like Distill-Qwen-7B, ensuring efficient resource utilization during inference operations[^1]. #### Installation Guide To install and use this model effectively: Ensure Python environment setup includes necessary libraries such as `transformers`, `torch` etc., which can be installed via pip commands: ```bash pip install transformers torch ``` Download pre-trained weights from official sources compatible with Hugging Face Transformers library or directly through APIs provided by platforms hosting these models[^3]: For direct API access using requests package in python one could do something along lines of following code snippet: ```python import requests url = 'https://api.example.com/v1/models/qwen-moe-a2_7b' response = requests.get(url) if response.status_code == 200: with open('model_weights.bin', 'wb') as file: file.write(response.content) else: print(f"Failed to download model: {response.text}") ``` #### Example Code Snippet for Inference Once installation completes successfully, performing an inference operation might look like below example written in Python language utilizing PyTorch framework alongside HuggingFace’s transformer module: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("path_to_model_directory") model = AutoModelForCausalLM.from_pretrained("path_to_model_directory") input_text = "Your input text here." inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小怪兽会微笑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值