前端大模型入门:流式调用llm时前端该如何处理响应数据?

利用大模型开发应用时,我们有时候要第一时间给出用户相应,也就是使用流式调用的方式。这时候前端处理响应,就需要特殊的处理:利用处理可读流的方式从响应中读取数据。

随着大语言模型(LLM)在各种应用中的广泛使用,如何高效地从服务器获取模型生成的长文本响应成为一个重要问题。传统的HTTP请求模式通常等待服务器生成完整的响应内容再返回给客户端。然而,流式调用(streaming)通过分段传输部分响应,能提高实时性和用户体验。在此场景中,HTTP流式调用被广泛应用,尤其是在与LLM(如OpenAI的GPT等)进行交互时。

本文将介绍LLM的HTTP API流式调用的机制,并深入探讨前端如何处理流式响应,以实现实时的、渐进式的结果呈现。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

一、什么是HTTP API流式调用?

HTTP API流式调用(HTTP Streaming)是一种传输方式,服务器不会等待所有的数据生成完毕再返回给客户端,而是将响应数据逐步分段发送。当大语言模型生成内容时,服务器可以通过流式传输,将文本按块传递给前端,前端可以立即呈现这些部分内容,无需等待完整响应。

流式响应的基本流程:
  1. 客户端请求:前端通过HTTP请求向服务器发出调用,通常是POST请求,附带需要生成内容的提示(prompt),以及相关的参数。
  2. 服务器处理并分段响应:服务器开始处理请求,但不等待处理结束,先将部分生成的文本作为响应的一个数据块(chunk)发送给客户端。
  3. 客户端逐步接收并处理数据块:客户端持续监听流式响应,接收每个数据块并实时处理或呈现。
  4. 连接关闭:服务器在生成完毕后关闭连接,客户端停止接收数据。

这种方式特别适合用于大语言模型的文本生成任务,因为大规模模型生成的内容可能会很长,逐步输出可以改善用户的等待体验。

二、如何实现LLM的HTTP API流式调用?

以一个调用LLM(如OpenAI GPT模型)的流式HTTP API为例,下面是一个使用fetch来发起流式调用的典型前端实现流程。国内的各个大模型,调用方式差不多,参数也类似,甚至还会有openai兼容的openapi接口

const fetchStreamData = async (prompt) => {
  const response = await fetch('https://api.openai.com/v1/completions', {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json',
      'Authorization': `Bearer YOUR_API_KEY`
    },
    body: JSON.stringify({
      model: 'gpt-4',
      prompt: prompt,
      stream: true // 启用流式响应
    })
  });

  // 检查响应状态
  if (!response.ok) {
    throw new Error('Network response was not ok');
  }

  // 获取响应的可读流并处理流数据
  const reader = response.body.getReader();
  const decoder = new TextDecoder('utf-8');
  let done = false;
  
  while (!done) {
    // 读取流中的下一个数据块
    const { value, done: readerDone } = await reader.read();
    done = readerDone;
    
    // 将数据块解码为字符串
    const chunk = decoder.decode(value, { stream: true });
    console.log(chunk);  // 处理或显示每一块数据
    // ***** 这需要注意,各个大模型的分块数据结构可能不一样,甚至会有可能出现部分数据的情况,要单独兼容和处理哦
    // 以及有些模型内容的路径不一样,一次性响应在content,但是流式在delta字段下
  }
};

1. 请求设置
  • fetch函数用于发起POST请求,stream: true选项通知服务器启用流式传输。
  • 请求体中包含模型ID和提示词prompt,以及其他必要参数(如API密钥)。
2. 读取流数据
  • 使用response.body.getReader()获取一个流的阅读器(Reader),该阅读器允许我们按数据块逐步读取响应。
  • TextDecoder将字节数据解码为文本格式,确保能够正确处理流传输中的文本数据。
3. 逐块处理数据
  • 通过reader.read()逐步读取每个数据块,value包含读取到的字节数据,done表示流是否已结束。
  • chunk是解码后的文本数据,每次接收到新的数据块时可以实时处理或显示。

三、前端如何处理流式响应?

当后端返回流式响应时,前端可以逐步接收并更新UI,提供更好的用户交互体验。以下是前端处理流式响应的关键步骤。

1. 逐步更新界面

每当接收到一个新的数据块,前端可以立即将其更新到UI上,而不必等待完整的响应。这种实时更新的机制对于聊天机器人、搜索建议等场景尤为重要。例如:

const chatBox = document.getElementById('chat-box');

const updateChat = (text) => {
  // 将新数据块追加到界面上
  chatBox.innerHTML += `<p>${text}</p>`;
};

// 在逐块接收时更新
while (!done) {
  const { value, done: readerDone } = await reader.read();
  const chunk = decoder.decode(value, { stream: true });
  updateChat(chunk);  // 实时更新聊天框
}

通过这种方式,用户能够看到模型生成内容的部分结果,即使整个请求尚未完成,提升了用户体验。

2. 处理中断或错误

在流式调用中,网络连接可能会中断,或者服务器可能会返回错误。前端应该做好错误处理,例如:

if (!response.ok) {
  console.error('Error with the request');
  return;
}

reader.read().then(processStream).catch(error => {
  console.error('Error while reading stream:', error);
});

在中断时,前端可以选择显示错误消息,或尝试重新发起请求以重新建立连接。

3. 流数据的拼接与处理

由于流传输的数据是分块发送的,前端可能需要将这些分段数据拼接起来,形成完整的响应。例如:

let fullResponse = '';

while (!done) {
  const { value, done: readerDone } = await reader.read();
  const chunk = decoder.decode(value, { stream: true });
  fullResponse += chunk;  // 拼接完整响应
}

4. 自动滚动和用户交互优化

对于聊天机器人或类似应用,前端可以设置自动滚动,使得用户在流式数据逐步加载时能够始终看到最新的内容。

const scrollToBottom = () => {
  chatBox.scrollTop = chatBox.scrollHeight;
};

updateChat(chunk);
scrollToBottom();  // 更新后自动滚动

四、流式调用的优势

  1. 提升用户体验:通过流式传输,用户能够实时看到部分生成的内容,而不需要等待整个模型生成完毕,从而减少了感知延迟。
  2. 减少服务器压力:在某些场景下,流式调用可以减少服务器压力,因为服务器可以按需逐步处理和发送数据,而不需要一次性生成和发送大量数据。
  3. 增强交互性:用户能够根据逐步收到的内容进行进一步操作,如在对话中实时反馈等。

五、总结

HTTP API流式调用为大语言模型的响应提供了更高效和实时的交互方式。通过流式调用,前端可以逐步接收模型生成的部分数据,并即时呈现,从而提升用户体验。前端在实现流式调用时,需要处理数据分块的拼接、实时更新界面和处理可能的中断错误。通过这种方式,可以在交互密集的应用场景(如聊天机器人、自动化助手等)中大幅改善用户的使用体验。

处理流式调用,尤其是国产大模型的兼容是一个重复的工作,后面的章节如果有空,我会讲讲如何基于rxjs或者langchain.js简化这个工作


读者福利:倘若大家对大模型抱有兴趣,那么这套大模型学习资料肯定会对你大有助益。

针对0基础小白:

如果你是零基础小白,快速入门大模型是可行的。
大模型学习流程较短,学习内容全面,需要理论与实践结合
学习计划和方向能根据资料进行归纳总结

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

这里我们能提供零基础学习书籍和视频。作为最快捷也是最有效的方式之一,跟着老师的思路,由浅入深,从理论到实操,其实大模型并不难


![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/da7761679e2a48638a7d8e613413e749.jpeg#pic_center

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

学习路上没有捷径,只有坚持。但通过学习大模型,你可以不断提升自己的技术能力,开拓视野,甚至可能发现一些自己真正热爱的事业。

最后,送给你一句话,希望能激励你在学习大模型的道路上不断前行:

If not now, when? If not me, who?
如果不是为了自己奋斗,又是为谁;如果不是现在奋斗,什么时候开始呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值