2025!国内AI大模型平台哪家强?全方面测评来了

2023年无疑会被载入史册,成为大模型技术全面爆发的标志性元年。经过一年多的高速发展,各大科技厂商纷纷争先恐后地推出了自家的大模型产品,比如阿里的通义千问、百度的文心一言等。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

与此同时,各家围绕着大模型生态建设的步伐也没有落下,各类Agent、AI大模型平台百花齐放。目前看来,各厂商正处于积极拓展用户基础、吸引模型&合作生态入驻、优化平台用户体验及探索商业化模式的关键阶段。

作为一名时刻关注AI技术前沿动态,并且每天切身在应用相关技术(跑个demo啦、撸个paper啦)的AI开发者,我觉得很有必要出一期当前(截止2024年2月份)国内AI大模型平台的全方面测评(咱就是说目前知乎上也没有,就自己做一期)

img

那么要全方位评判一个大模型平台的优劣,我们将从以下几个核心维度展开探讨:

1、社区规模:主要通过平台上模型数量&种类、社区开发者数量、应用数量、下载量等硬性指标进行评测;

2、平台基础设施能力:主要关注数据集&SFT(Supervised Fine-Tuning, 有监督微调)支持方面,考察平台是否提供了充足的算力资源和强大的数据集能力,以确保开发者能够高效便捷地进行模型训练、部署与微调工作;

3、生态建设与社区活跃度: 主要评估平台相关课程(教程)的丰富度、社区活动、赛事开展等因素进行综合评估。因为好的社区生态+活跃度会直接或间接地影响到平台上内容的“上新”效率(或者说发布周期)和质量;

那么接下来,我将基于上述多角度的专业评测,为广大的AI从业者提供详尽且客观的参考依据,希望能够帮助大家选择自己合适的AI大模型平台~


综合类平台
阿里云

关键词:开源、模型库强大、开箱即用

img

2022年底推出的阿里云旗下的开放MaaS(Model-as-a-Service)平台,提供了多种领域预训练模型的在线试用、下载、在线微调与部署等功能,致力于为AI开发者和研究者提供一站式模型开放服务。

根据公开信息显示,魔搭社区已经吸引了大量的开发者参与,拥有2300+的模型、280万+AI开发者和600+数据集。并且集合了来自多家顶尖人工智能机构贡献的900多个AI模型资源,涵盖了广泛的领域和应用类型。

img

整体来看领域覆盖度挺全面的,包括CV、LLM&NLP、图像和多模态等其他领域。不仅支持自家的模型还吸引了非常多外部开源模型的入驻,但优势领域应该还是集中在LLM&NLP这块;

平台的基础设施能力不错,创空间有点那么**“开箱即用”**的意思了,并且基于阿里云基础设施底座为新用户提供了免费的CPU/GPU资源(高阶的算力得花钱,按量付费)。支持主流接入SDK,创建好项目后就是一个github范式的开发大动作。

支持在线的SFT,也封装好了很多python开箱库(简单留给用户,直接pip install就可以用起来)以及配套教程(也有专门的答疑群)

img

img

生态建设这块虽然有一些配套板块(在首页 -> 动态 -> 下拉栏里面) 的布局,比如竞赛、活动等,但是横向对比其他平台来看,生态建设的丰富度还是相对薄弱一些的,所以个人开发者的社区活跃度可能会低一些。

img

总的来说,魔搭ModelScope作为国内目前最大的AI大模型平台开源社区我觉得是当之无愧的,一年多就可以成长到如今模样,未来更是可期✨!

并且由于走的是开源这条路子,做了很多给开发者的让利,很简单,没有太多商业化的设计。特别适合想基于基础算力体验业界最新开源模型的开发者友友们,所以这也是为什么,有越来越多的B端或者个人开发者会选择开源模型首发到魔搭ModelScope(群众的眼睛是雪亮 的)。

总体评分如下:

  • 社区规模:★★★★★
  • 平台基础设施能力:★★★★★
  • 生态建设与社区活跃度:★★★★☆

百度飞桨AI 星河社区

关键词:飞桨Paddle、付费会员、小白友好应用、生态运营强

百度飞桨起源于2016年9月左右,而飞桨AI Studio星河社区是于2023年8月份推出的,百度旗下的一个AI平台,也提供了多种领域的预训练模型、在线试用、在线训练&部署等能力。社区规模说是有800万+开发者(存疑),230+模型库。

img

如果说魔搭上创空间的体验,像是你在github上fork了一个代码仓库然后进行开发,那么区别与魔搭,在星河AI Studio上的体验,会更偏向于在一个成熟商业平台的使用体验,并且对不同人群(比如开发者、技术小白等)也进行了差异化划分。主要是通过项目应用的等不同板块去提供这些能力的,我们一个个来说:

项目

项目这个tab下面,布局有点像是AI+文字条目版的小红书,内容面向传统AI模型项目(比如OCR、推荐、搜索、目标检测等)+ 大模型项目

img

支持3种快速创建项目的方式

img

商业化划分点也比较明确,项目需要RUN的时候,基础算力免费,高阶算力采取会员付费制度

img

应用:

应用可以理解成是项目文件(脚本/Notebook等)运行后生成的带WebUI的交互界面。应用这个tab下面,布局就更简单明了了,内容主要面向AIGC大模型相关的应用(比如AI绘画、语音生成、文本生成、ChatBot等),别的开发者的应用如果是公开的也可以直接体验。

img

如果自己创建应用的话,对零代码基础的小白和开发者进行了区分:

img

如果创建的是零代码应用,则会直接给你提供一个WebUI,也符合“开箱即用”的标准。

img

如果创建的是基于代码的应用,可选的框架有Gradio/Steamlit(都是将Python脚本转换为交互式Web应用程序的框架&工具),应用创建完后端的代码还是在项目下的,同理也是模型训练的时候会有算力的差异化售卖。

img

整体来说,个人感觉开发的自由度相对低一些,搭载PaddlePaddle框架,对于习惯了自由开发流程的童鞋们可能不太友好;但对新手小白或是低代码平台开发者、想体验别人二次创作有趣应用的童鞋、还是很友好的~

并且社区的生态运营还是比较顶的,归纳为以下几点:

  1. 课程做的很好,还推出了很多(面向校企的)教育合作&证书认证课程;
  2. 赛事的投放也比较多,这个跟飞桨本身起源早,当初在推广AI框架时候就有相应积累&沉淀密不可分;
  3. 商业模式布局广,有付费会员制度,也推出了配套的积分商城等以提高(签到、做活动任务攒积分)社区活跃度;

总体评分如下:

  • 社区规模:★★★★★
  • 平台基础设施能力:★★★★☆
  • 生态建设与社区活跃度:★★★★★

华为昇思大模型平台

关键词:MindSpore框架、生态运营强

华为MindSpore开源于2020年3月,而昇思大模型平台是于2023年4月份推出的,华为旗下的一个AI大模型平台,覆盖多领域任务,体验全流程开发,搭载了自己的Ascend芯片、ModelArts训练框架和MindSpore AI框架,支持用户在线训练和推理可视化。社区规模上会小很多,截至2023年有效数据统计,社区注册用户数2.9万+,模型库670+。

个人感觉昇思大模型平台在体验上,给人一种星河 + ModelScope的体感:

首先它的AI实验室Tab下的内容,是和星河类似的,也是面向传统AI模型项目(CV、NLP、推荐等)+ (少量)大模型项目,这个这两家公司之前都是在主推AI训练框架有关,这方面比较优势,所以大模型风口一来,不能说老的丢掉吧,得想个融合的呈现形式。

img

在大模型Tab下的内容,更多是B端比较拿得出手的合作模型&项目,提供给用户在线体验的可能性(但一共就十几个项目,而且好多都还没上线,看来还是在紧锣密鼓地布局之中呀),然后模型微调模块也不是很可用

img

img

开源下载地址还是回到了魔搭ModelScope上

项目创建:
类似于魔搭的“创空间”,用户可通过创建自己的项目空间来迈出第一步:

img

在线开发的Notebook提供了基于华为基础设施底座的CPU/GPU资源(但是Ascend的GPU资源目前不能用)

img

img

总得来说,所见即所得吧,整体感觉还不是很ready。但和星河的发展路径类似,课程&活动&比赛的生态运营还是做的比较好的(MindSpore的生态运营还是业界有名的),加上之前也是主要做开源的,商业化这块估计也还是在摸索,期待后续的发展吧~

img

总体评分如下:

  • 社区规模:★★★☆☆
  • 平台基础设施能力:★★☆☆☆
  • 生态建设与社区活跃度:★★★☆☆
Hugging Face Model Hub - 中文站

关键词:开源、国际化、模型库强大

除了国内原生的,来自国外的也有比如Hugging Face推出了中文站,上面也有不少中文预训练模型可供选择,随着对多语言支持的不断推进,尤其是对于像中文这样的大语种,相信Hugging Face中文社区应该会吸引更多的中国开发者和研究者参与进来共建,为国内用户提供更全面、深入的技术交流和学习平台。

我也想多写点,但是 挂了,等修好再补这段相信老老老老粉们一定不会怪罪我吧。。。

img


除了综合类的AI大模型平台,垂直领域也有很多衍生的大模型AI平台从2023年以来展露头脚,我们先从面向图像生成领域说起!

垂直领域:图像生成
哩布哩布 liblib

关键词:流量平台式、创作者经济

哩布哩布AI(LiblibAI)是一个由北京奇点星宇科技于2023年9月推出,靶向插画家、设计师、摄影师、游戏开发者等视觉类需求用户的,专注于图像生成和模型素材库的建设的一个平台。

img

主要提供以下核心服务和功能:

  1. 模型库:提供超过10w+的图像模型库(SFT后的模型,非底座模型),包括但不限于建筑设计、插画设计、摄影、游戏美术、中国风艺术、室内设计、动漫、工业设计等各种领域和风格的模型素材,供用户免费 or 付费下载使用。
  2. 创作者社区:鼓励和支持创作者加入并分享自己的AI绘画作品及模型,形成了一个活跃的原创AI模型分享交流环境。交互类似于小红书(但还没有app、仅web版),并且有对应的创作者经济生态(平台通过与创作者共享收益,如版权分成,来吸引更多的内容贡献者,并在此基础上实现商业化)。
  3. 在线图像生成:提供WebUI+模型库让用户在线免费生成、下载自己想要的图片
  4. 在线Lora训练:提供基于WebUI和新图/数据集的在线Lora训练,个性化微调已有模型(在此过程中插入商业化,如算力、存储空间、训练模式的差异化付费)

img

img

怎么说呢,这个平台从推出到现在也就半年吧?

img

基于图像领域的天然交互优势,复刻了流量平台(比如小某书、某音)那套商业化模式走得飞起 ,使得创作者经济生态得到快速构建,然后在此基础上马上推出了付费会员,家人们谁懂啊!太6了~

总体评分如下(在图像生成领域):

  • 社区规模:★★★★★
  • 平台基础设施能力:★★★★☆
  • 生态建设与社区活跃度:★★★★★

垂直领域:自然语言生成

TODO


总结

这篇仅是开坑哈,后面会持续更新的~

主旨就是想要在滚滚浪潮中帮助AI开发者发现、汇聚到简单、好用的AI大模型平台&开发者社区上来,共建国内繁荣AIGC生态!!

img

有些规模太小、不好用、吃相太难看(没几个模型就要走付费变现路子的)的平台我就先不放上来啦

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
在这里插入图片描述

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 2025年中国十大最AI大模型公司或项目预测 #### 阿里云通义千问 作为当前领先的大型语言模型之一,通义千问已经展示了大的功能和技术实力。预计到2025年,该平台将继续保持领先地位,在多轮对话、文案创作等方面提供更加智能化的服务[^1]。 #### 百度文心一言 隶属于百度的文心一言同样具备劲的竞争优势。凭借其深厚的自然语言处理技术和丰富的应用场景,这款产品有望在未来几年内取得显著进展并扩大市场份额。 #### 华为盘古系列 华为推出的盘古系列大模型已经在多个行业得到了广泛应用。考虑到公司在硬件制造方面的大背景以及对于软件研发持续投入的决心,可以预见盘古将在未来三年继续引领潮流,特别是在工业互联网等领域发挥重要作用[^2]。 #### 腾讯混元 腾讯旗下的混元大模型以其出色的性能和广泛的应用场景而闻名。随着社交网络数据量的增长及算法优化能力提升,混元有潜力成为市场上最受欢迎的产品之一。 #### 字节跳动火山引擎 字节跳动利用自身庞大的用户基础与海量的内容资源训练出了高效的推荐系统——火山引擎。这使得该公司能够在个性化服务方面占据先机,并可能进一步拓展至其他垂直领域。 #### 清华大学AMiner团队 学术界也不乏优秀的研究成果,清华大学AMiner团队开发的人工智能科研辅助工具就是一个很好的例子。这类由高校主导的研发成果往往能带来新的视角和技术突破,值得密切关注。 #### 科大讯飞星火认知大模型 科大讯飞长期专注于语音识别技术研发,在此基础上构建起了一套完整的智能交互解决方案——星火认知大模型。凭借多年积累的技术经验和市场口碑,这一方案极有可能在未来获得更广泛的采用。 #### 商汤科技SenseCore AI大装置 商汤科技依托于自研的SenseCore AI大装置,实现了从底层算力设施到上层应用系统的栈覆盖。这种端到端的一体化架构有助于提高整体效率和服务质量,从而增企业的核心竞争力。 #### 小冰框架 微软亚洲研究院孵化的小冰框架不仅限于聊天机器人范畴,还涵盖了音乐制作等多个创意产业方向。由于背后有着国际顶尖研究机构的支持,小冰框架有能力不断推陈出新,探索更多可能性。 #### 浪潮信息源思 浪潮信息致力于打造高效稳定的云计算服务平台,旗下源思大模型则聚焦于为企业级客户提供定制化的AI解决方案。基于此定位,源思始终保持着较高的技术水平和发展速度,在特定细分市场中表现优异。 ```python # 示例代码展示如何获取上述公司的最新动态(虚构) import requests def get_company_updates(company_name): url = f"https://api.example.com/companies/{company_name}/updates" response = requests.get(url) if response.status_code == 200: return response.json() else: raise Exception(f"Failed to fetch updates for {company_name}") for company in ["阿里云", "百度", "华为"]: try: print(get_company_updates(company)) except Exception as e: print(e) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值