Monica 公司发布了 AI Agent 智能体产品—— Manus ,是一款具备突破性技术的通用型 AI 代理,根据 Manus官网(https://manus.im)技术白皮书和网络公开资料,整理 Manus 核心技术和应用信息如下,欢迎讨论。
技术架构
多智能体协作系统
Manus 采用规划代理、执行代理和验证代理的分工机制,模拟人类工作流程,提升复杂任务的处理效率。
规划代理采用蒙特卡洛树搜索(MCTS)算法优化任务拆解效率;执行代理调用工具(如代码编写、网页爬虫),不能调用 CS 架构应用程序;验证代理集成对抗性测试模块,可检测生成结果的逻辑矛盾,如财报数据与行业基准偏差超过 5% 自动触发复核。
技术理念
强调 “less structure more intelligence”(更少结构,更多智能),注重优质数据、强大模型、灵活架构和扎实工程的结合,而非依赖预设规则。
但 Hacker News 有开发者质疑该理念实质是 “规则工程转移”(将预设规则转化为模型训练目标),Manus 在 GitHub 开源模块 manus-core 中,被发现包含 12,000+ 条业务规则约束(如金融领域审计红线)。
持续学习与记忆
支持长期记忆存储和自主学习能力,能够根据用户交互持续优化任务执行。
性能表现
GAIA 基准测试
Manus 在 GAIA 测试中刷新了 SOTA(State-of-the-Art)成绩,以 86.5% 准确率位列第一,超越 OpenAI 的 Deep Research 模型 74.3%,在真实世界问题解决能力上表现尤为突出。
训练成本
单任务运行成本约 2 美元(基于 AWS Lambda 按需计费,128GB 内存实例运行 25 分钟,但未计入预训练模型摊销成本),仅为竞品 DeepResearch 的 1/10(DeepResearch 使用定制 TPU 集群,边际成本更高但固定成本分摊后可能更具规模效应),实现高性价比 SOTA。
多模型驱动
大模型用了 Claude-3.5-Sonnet、StableLM-3B-IT 和 Qwen-72B-Chat-Int4 量化版本,但Manus 宣传擅长调用大模型 API,估计不止这些,应该是由多个独立模型协同工作,未来计划开源部分模型(如推理部分)。
功能与执行能力
云端异步处理
用户可关闭设备,Manus 在云端自主完成任务后发送通知,支持离线执行复杂任务。但是,**对于时长超长的任务,Manus 的任务中断率在 3.7% 左右。**如果采用 Checkpointing 机制每 15 分钟保存状态,GPU 内存快照恢复存在 5-8% 性能损耗。
工具调用与自动化
-
代码编写与执行:自动生成并运行代码,完成数据分析、网页创建等任务。
-
网页爬虫与信息整合:在 B2B 场景中检索供应商信息,生成图表和操作建议。
-
文件处理:解压文件、筛选简历、生成电子表格等。
应用场景
Manus 覆盖 40 多个领域
-
商业分析:股票市场分析、财务报告生成、销售策略优化。
-
生活服务:定制旅行规划、保险政策对比、酒店预订。
-
教育与人力资源:为教师制作教学材料,筛选候选人的简历并安排面试。
团队与背景
创始人肖弘
33 岁,华中科技大学软件工程专业毕业,连续创业者,曾开发企业微信工具“微伴助手”和 AI 插件 Monica,后者用户超 1000 万。
技术整合策略
Monica 团队以整合大模型 API 和快速响应市场需求见长,被部分评论称为“超级缝合怪”,但其在用户体验和功能封装上具有优势。
公司战略
一是规避国内竞争,避开与百度、阿里等大厂的直接交锋,聚焦欧美用户需求;二是技术套壳的价值重构,认为“应用公司应类比消费电子公司(如苹果)”,通过整合大模型API创造差异化体验,而非追求底层技术颠覆。
争议与未来规划
技术质疑
The Information 报道《China’s AI Glue Factory》提及 Monica 团队**“API 调用次数超过代码行数”**, 认为 Manus 依赖 “套壳” 模式(整合现有模型),但团队强调其在任务规划与执行层的创新,据悉, Manus 已申请多模型路由优化算法专利(专利号 US2024178902),证明其整合技术创新性。
开源计划
计划开源部分技术以推动 AI 社区发展,重点可能是推理模型。GitHub 组织显示 manus-ai 于2024/7/15 创建,但尚未发布仓库。
商业化前景
目前仅限邀请制内测,未来可能对标 OpenAI 的 Agent 服务(如企业级高价订阅),但估计面向客户会聚焦中小型金融机构(资产管理规模 1B-10B),而非 OpenAI 主攻的科技巨头。
以上。
恭喜国人团队再下一城!!!
最先掌握AI的人,将会比较晚掌握AI的人有竞争优势
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
倘若大家对大模型抱有兴趣,那么这套大模型学习资料肯定会对你大有助益。
针对0基础小白:
如果你是零基础小白,快速入门大模型是可行的。
大模型学习流程较短,学习内容全面,需要理论与实践结合
学习计划和方向能根据资料进行归纳总结
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
这里我们能提供零基础学习书籍和视频。作为最快捷也是最有效的方式之一,跟着老师的思路,由浅入深,从理论到实操,其实大模型并不难。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
学习路上没有捷径,只有坚持。但通过学习大模型,你可以不断提升自己的技术能力,开拓视野,甚至可能发现一些自己真正热爱的事业。
最后,送给你一句话,希望能激励你在学习大模型的道路上不断前行:
If not now, when? If not me, who?
如果不是为了自己奋斗,又是为谁;如果不是现在奋斗,什么时候开始呢?