昨晚,通用 Agent Manus 预览版正式发布,其任务规划与执行能力引起了广泛关注。根据官方案例,我们可以看到 Manus 集成了 computer use、deep research、coding agent 等多个概念,能够高效完成复杂的经济分析任务。本次,我们将详细解析 Manus 在中国房地产反弹计量经济学分析中的工作流、数据管理以及前端交互体验。
一、工作流:如何规划和执行分析任务
1、 任务规划(Plan)—— 创建 todo.md
Manus 首先会创建 todo.md
文件,该文件是任务管理的核心,清晰列出了分析流程。相比于传统的 Plan Agent 仅依靠记忆上下文管理任务,Manus 通过 md 文件的更新,使任务进度更直观且可追溯。
**示例:房地产市场反弹分析
# 中国房地产市场反弹计量经济学分析任务清单
## 研究问题定义
- [x] 明确研究问题及假设
- [x] 确定分析范围(时间区间、数据指标等)
## 数据收集
- [x] 获取 2020-2024 年房地产销售面积、销售额、投资额
- [x] 获取 70 城市房价指数
- [x] 获取房地产贷款利率、金融政策调整信息
- [x] 收集行业研究报告和分析师观点 ## 数据预处理
- [x] 处理缺失数据,标准化数据格式
- [x] 结构化存储房价指数和政策数据
## 探索性数据分析(EDA)
- [x] 计算销售面积、销售额及投资额的同比变化
- [x] 分析二手房和新房市场趋势
- [x] 研究政策影响对市场的推动作用
## 计量经济学建模
- [x] 构建 ARIMA/SARIMA 模型
- [x] 进行结构突变检验
- [x] 采用向量自回归(VAR)分析市场未来走势
## 结果可视化和报告撰写
- [x] 生成关键数据可视化图表
- [x] 编写完整分析报告
2、 任务执行(To Do)—— computer use、deep research、coding agent
Manus 在 todo.md
的指导下,逐步执行任务,结合 computer use、deep research 和 coding agent 完成分析。
2.1 数据收集(Deep Research)
Manus 通过浏览器交互功能(browser use)检索数据,数据来源包括:
-
国家统计局:获取官方房地产销售数据
-
行业研究报告:参考券商、研究机构的分析
-
政策文件:分析政府出台的调控政策
-
新闻和市场分析:了解市场情绪和专家观点
-
例如,在收集 70 城市房价指数时,Manus 可能执行以下操作:
-
访问数据网站
-
滚动查找数据
-
识别并下载数据文件
-
解析数据存储为结构化格式
2.2 数据处理(Computer Use)
数据收集后,Manus 需要进行数据清理和标准化:
-
处理缺失值(填充或删除)
-
统一数据格式(日期格式、单位转换)
-
结构化存储(CSV、SQL 数据库)
示例:
import pandas as pd
# 读取房价数据
house_price = pd.read_csv('house_price_index.csv')
# 处理缺失值
house_price.fillna(method='ffill', inplace=True)
# 标准化日期格式
house_price['date'] = pd.to_datetime(house_price['date'])
3、 计量经济学建模分析(Coding Agent)
在数据清理完毕后,Manus 开始构建计量经济学模型:
-
ARIMA/SARIMA:预测房价走势
-
结构突变检验:判断市场转折点
-
向量自回归(VAR):评估市场动态
例如,使用 SARIMA 模型预测未来房价:
from statsmodels.tsa.statespace.sarimax import SARIMAX
# 训练 SARIMA 模型
model = SARIMAX(house_price['price'], order=(1,1,1), seasonal_order=(1,1,1,12))
results = model.fit()
# 预测未来走势
forecast = results.predict(start=len(house_price), end=len(house_price)+12)
4、 任务更新与交付(Update todo.md)
Manus 在完成各项任务后,会同步更新 todo.md
文件,确保任务透明化。
## 数据收集
- [x] 获取 2020-2024 年房地产销售面积、销售额、投资额
- [x] 获取 70 城市房价指数
- [x] 获取房地产贷款利率、金融政策调整信息
- [x] 收集行业研究报告和分析师观点
最终,Manus 生成完整的分析报告,并打包所有文件供用户下载。
二、前端交互体验
Manus 的交互体验提升了用户操作便捷性,主要特点包括:
-
实时任务进度追踪:右侧面板动态更新
todo.md
任务完成情况。 -
流式任务回放:所有计算过程可回溯,确保分析透明。
-
自动生成可视化:数据结果直观展现,提高可读性。
三、Manus 对房地产市场分析的价值
从 Manus 的工作流可以看出,它在计量经济学分析中的优势包括:
-
高效的数据收集与整合:自动化爬取、整理数据,降低人工干预成本。
-
智能建模分析:结合主流计量经济学方法,提供科学的市场预测。
-
可视化输出:直观展示数据趋势,提高报告可读性。
-
自动任务追踪:清晰的任务管理体系,提高研究效率。
从 Manus 分析的结果来看,中国房地产市场正处于从下行周期向企稳阶段的过渡期,二手房市场已经出现反弹信号,而新房市场仍在恢复过程中。政策效应的持续释放,将进一步推动市场稳定。
未来,Manus 的强大能力或将广泛应用于经济研究和投资分析,助力研究人员和投资者高效完成复杂的经济分析任务。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!