多重假设检验校正为什么有效?

博客探讨了在高通量实验中p值的问题,指出p值仅适用于单次实验,而在多重假设检验中需要进行校正以避免错误发现率(FDR)。文章介绍了邦弗朗尼校正和Benjamini-Hochberg过程,分别用于控制家庭错误率(FWER)和FDR。此外,还解释了p值的本质是控制假阳性率,并对比了p值和q值在单一和多次试验中的应用,强调在多次试验中控制FDR的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.零假设和p值

 零假设:在随机条件下的分布。

 p值:在零假设下,观测到某一特定实验结果的概率称为p值。

2.为什么高通量实验中p值存在问题?

 p值只对一次实验结果有效,如果是多重假设检验需要进行校正。

3.多重假设检验校正。

 邦弗朗尼校正:p值小于显著性阈值/n(在零假设中至少有一个的得分会大于观测值的概率为显著性阈值,即我们有1-显著性阈值的概率可以确定在零假设中不会出现比观测值大  的值。所以如果出现了比观测值大的值可以认为是随机误差产生的。)(控制FWER)

 Benjamini-Hochberg过程:设总共有m个候选基因,每个基因对应的p值从小到大排列分别是p(1),p(2),...,p(m),则若想控制fdr不能超过q,则只需找到最大的正整数 i࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值