多重假设检验与校正

目录

一、多重假设检验问题

 二、方法

1、Bonferroni校正

2、FalseDiscovery Rate (FDR校正)


参考链接:https://blog.csdn.net/zhu_si_tao/article/details/71077703

一、多重假设检验问题

举一个具体的实例:

我们测量了M个基因在A,B,C,D,E一共5个时间点的表达量,求其中的差异基因,具体做法:

(1)首先做ANOVA,确定这M个基因中有哪些基因至少出现过差异

(2)5个时间点之间两两比较,一共比较5*4/2=10次,则多重假设检验的n=10

(3)每个基因做完10次假设检验后都有10个p-value,做多重假设检验校正(n=10),得到q-value

(4)根据q-value判断在哪两组之间存在差异

通过T检验等统计学方法对每个蛋白进行P值的计算。T检验是差异蛋白表达检测中常用的统计学方法,通过合并样本间可变的数据,来评价某一个蛋白在两个样本中是否有差异表达。

但是由于通常样本量较少,从而对总体方差的估计不很准确,所以T检验的检验效能会降低,并且如果多次使用T检验会显著增加假阳性的次数。

例如,当某个蛋白的p值小于0.05(5%)时,我们通常认为这个蛋白在两个样本中的表达是有差异的。但是仍旧有5%的概率,这个蛋白并不是差异蛋白。那么我们就错误地否认了原假设(在两个样本中没有差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值