目录
参考链接:https://blog.csdn.net/zhu_si_tao/article/details/71077703
一、多重假设检验问题
举一个具体的实例:
我们测量了M个基因在A,B,C,D,E一共5个时间点的表达量,求其中的差异基因,具体做法:
(1)首先做ANOVA,确定这M个基因中有哪些基因至少出现过差异
(2)5个时间点之间两两比较,一共比较5*4/2=10次,则多重假设检验的n=10
(3)每个基因做完10次假设检验后都有10个p-value,做多重假设检验校正(n=10),得到q-value
(4)根据q-value判断在哪两组之间存在差异
通过T检验等统计学方法对每个蛋白进行P值的计算。T检验是差异蛋白表达检测中常用的统计学方法,通过合并样本间可变的数据,来评价某一个蛋白在两个样本中是否有差异表达。
但是由于通常样本量较少,从而对总体方差的估计不很准确,所以T检验的检验效能会降低,并且如果多次使用T检验会显著增加假阳性的次数。
例如,当某个蛋白的p值小于0.05(5%)时,我们通常认为这个蛋白在两个样本中的表达是有差异的。但是仍旧有5%的概率,这个蛋白并不是差异蛋白。那么我们就错误地否认了原假设(在两个样本中没有差