多重假设检验:Bonferroni 和 FDR

在生物统计学中,为了降低假阳性结果,需要进行多重检验校正。本文介绍了两种主要方法:Bonferroni校正通过严格降低P值阈值来消除假阳性,但可能过于保守;而FDR(False Discovery Rate)校正则旨在控制假阳性比例,以更平衡的方式处理阳性结果。Bonferroni公式为p(1/n),FDR中的BH方法则寻找最大k值,满足P(k)<=αk/m,以此确定显著差异的检验结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在进行生物统计学的计算过程中,P值是需要进行校正的。因为P值的阈值是人为规定的,无论是多小的P值,也仅仅能代表结果的低假阳性,而非保证结果为真。即使P值已经很小(比如0.05),也会被检验的总次数无限放大。比如检验10000次,得到假阳性结果的次数就会达到 5%*10000=500次。
所以这时候我们就需要引入多重检验来进行校正,从而减低假阳性结果在我们的检验中出现的次数。

主要使用的校正办法有两种:

1、Bonferroni 校正

Bonferroni 校正法可以称作是“最简单粗暴有效”的校正方法,它拒绝了所有的假阳性结果发生的可能性,通过对p值的阈值进行校正来实现消除假阳性结果。

Bonferroni 校正的公式为p(1/n),其中p为原始阈值,n为总检验次数。

如果像我们举的例子一样,原始的P值为0.05,检验次数为10000次,那么在Bonferroni 校正中,校正的阈值就等于5%/ 10000 = 0.000005,所有P值超过0.00005的结果都被认为是不可靠的。这样的话假阳性结果在10000次检验中出现的次数为 10000 * 0.000005 =0.5,还不到1次。

但是这也存在问题:Bonferroni 委实太过严格,被校正后的阈值拒绝的不只有假阳性结果,很多阳性结果也会被它拒绝。

2. FDR(FalseDiscovery Rate) 校正

相对Bonferroni 来说,FDR温和得多,这种校正方法不追求完全没有假阳性结果,而是将假阳性结果和真阳性的比例控制在一定范围内。

举个例子,我们最开始设定的情况中进行了1000

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值