11-27 学习感悟

今天学习了使用dbcp连接池连接数据库

顺便复习了一下数据库的建立 表的建立等知识

自学了java的if语句、switch语句

在if语句中有三种格式

1、

if(条件表达式)

{

执行语句;

}

2、

if(条件表达式)

{

执行语句;

}

else

{

执行语句;

}

3、

if(条件表达式)

{

执行语句;

}

else if

{

执行语句;

}

else if

{

执行语句;

}

……

else

{

执行语句;

 

应用环境:适用于区间范围的判断、程序运行的结果为布尔类型时、一般用if。

 

 

switch语句 应用环境 : 在对几个已知的数值进行判断是用switch语句效率较高

 

switch语句在执行时 default语句在最后是break可以省略 ,switch语句判定成功时 如果未遇到break 会将之后的能执行的语句全部执行(无视判定条件)知道遇到break或switch语句结束。

 

关于Scanner类

 

java中比较强大的读取用户输入内容的类

 

 

 

K-means算法是一种经典的聚类算法,它通过将数据集划分成K个簇,使得每个簇内的数据点之间的距离最小,而簇与簇之间的距离最大。在学习和实践K-means算法的过程中,我有以下几点感悟: 首先,K-means算法是一种简单易用的算法,适用于大规模数据处理。算法的核心思想是通过不断迭代,将数据集划分成K个簇。在每一次迭代中,K-means算法会计算每个数据点与每个簇中心的距离,并将数据点归属到距离最近的簇中心。通过多次迭代,可以得到最终的簇划分结果。 其次,K-means算法的效率和精度受到初始簇中心的影响。由于K-means算法的迭代是基于初始簇中心进行的,因此初始簇中心的选择会影响算法的效率和精度。在实践中,我们可以通过多次随机选择初始簇中心,并计算每次迭代的效果,以选择最优的初始簇中心。 最后,K-means算法的应用场景非常广泛。例如,它可以应用在图像分割、文本聚类、生物信息学等方面。通过对数据进行聚类分析,可以帮助我们更好地理解数据的内在规律和特征,从而作出更加准确的决策。 总之,K-means算法是一种非常有意义的聚类算法,它可以帮助我们更好地理解数据,从而作出更加准确的决策。在学习和实践K-means算法的过程中,我们需要注重算法的理论和实践结合,以便更好地理解算法的核心思想和应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值