数学基础:矩阵

矩阵的概念:

数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列。矩阵里的元素可以是数字、符号或数学式。

如下是一个m×n的矩阵(m行n列):

Am×n=(aij)=a11a21am1a12a22am2a1na2namn

同型矩阵:

如果,矩阵 Am×n 和矩阵 Bm×n 都是m×n的矩阵,则这两个矩阵为同型矩阵

矩阵相等:

如果矩阵 Am×n 和矩阵 Bm×n 互为同型矩阵,并且对应元素相等 aij = bij 。则两个矩阵相等

行向量与列向量:

行向量是一个 1×n的矩阵,即矩阵由一个含有n个元素的行所组成:

α=a1,a2,,an=[a1a2an]

列向量是一个 n×1 的矩阵,即矩阵由一个含有n个元素的列所组成。(列向量的转置是一个行向量,反之亦然):
β=αT=a1,a2,,anT=a1a2an

方阵(n阶矩阵):

n行n列的矩阵是一个方阵,也叫做n阶矩阵,如 An

An×n=(aij)=a11a21an1a12a22an2a1na2nann

零矩阵:

所有元素都是0的矩阵。

单位矩阵(E):

主对角元素为1,其他元素为0的方阵是单位矩阵,如 En

En=10000100001

数量矩阵(kE):

主对角元素为K,其他元素为0的方阵是数量矩阵(就是一个数乘以一个单位矩阵),如 kEn

En=k0000k0000k

对角矩阵:

主对角是非零元素但未必相同,其他元素为0的方阵是对角矩阵,如 λn

λn=λ10000λ20000λn


矩阵的计算:

矩阵相加:

同型矩阵中。两个m×n矩阵A和B的和,标记为A+B,得到的仍一是个m×n矩阵,其内的各元素为其相对应元素相加后的值。例如:

111302+072051=1+01+71+23+00+52+1=183353

矩阵相减:

A-B内的各元素为其相对应元素相减后的值:

111302072051=101712300521=161351

矩阵相乘:

当矩阵A的列数和矩阵B的行数相等时才有意义
Am×n Bn×p ,因为A的列(n)和B的行(n)相同,所以他们可以相乘,它们的乘积为 ABm×p ;

例如 A2×3 × B3×2

[110321]×321110=[(1×3+0×2+2×1)(1×3+3×2+1×1)(1×1+0×1+2×0)(1×1+3×1+1×0)]=[5412]

  • 乘法不满足交换律 : AB ≠ BA;
  • 乘法结合律 : (AB)C=A(BC);
  • 乘法分配律: A(B+C)=AB+AC,(B+C)A=BA+CA;
  • 乘法和数乘结合律: λ(AB)=(λA)B=A(λB);
  • 单位矩阵满足: AE=EA=A;
  • 零矩阵满足: 0m×nAs×n=0m×n As×n0n×t=0s×t

矩阵转置:

把矩阵A的行换成同序数的列得到的矩阵,叫做A的转置矩阵,记作 AT

A2×3=(142536),AT=1234563×2

  • (AT)T=A
  • (A+B)T=AT+BT
  • (λA)T=λAT
  • (AB)T=BTAT

方阵的幂运算:

An×Am=An+m
(An)m=Anm
A0=E()

学习人工智能,机器学习都离不开数学基础和编程知识。 无论你是数据科学的初学者还是已经从事人工智能开发的有经验人员,这门课都适合于你。 为什么这么说?首先人工智能和机器学习本质上就是算法,而算法就是数学及统计学以及编程的结合。当前市场上有许多开源的软件包如SKLEARN确实可以帮助没经验的或缺乏数学或算法基础的人实现机器学习模型及预测,但这些工具无法使你真正懂得算法的本质或来源,或者无法使你在不同场合下灵活运用及改进算法。记住,在实际工作中找到适合应用场景的解决方案是最难但是最重要的。但这离不开数学基础和算法理解。 比如,线性回归是一类普遍的机器学习算法,所有的机器学习软件都有现成的方法实现模型,但如果在训练数据中加入几条新数据,那么新建立的模型和原来的模型有和联系或不同?再比如,为什么深度神经网络中的Sigmoid函数一般只用到输出层?神经网络的向后传播理论如何与泰勒展开和复合函数的偏导数联系在一起?人工智能中推荐系统和文字向量如何与矩阵的奇异分解以及特征向量联系?模型中对标签进行数据变换如何影响预测值?所有这些问题的答案,你都可以从本课中找到线索。 本课系统地讲述了有关人工智能,机器学习背后的数学知识。特别指出,微积分和代数知识是本课的核心。统计学基础被安排在另外的课程中。除此之外,我在每一章节或主要知识点后都安排了各类程序以解释和回顾所学到的东西。 最后要提到的是,这不是一门工程项目实践课。但我会另外专门安排有关人工智能,机器学习的实践课程
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页